Acknowledgement
본 연구논문은 서울시립대학교 교내학술연구비(201904301063)에 의하여 지원되었습니다.
References
- Blokker, E., Vreeburg, J. and Van Dijk, J. (2010). Simulating residential water demand with a stochastic end-use model, J. Water Res. Plan. Man., 136(1), 19-26. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000002
- Cardell-Oliver, R., Wang, J. and Gigney, H. (2016). Smart meter analytics to pinpoint opportunities for reducing household water use, J. Water Res. Plan. Man., 142(6), 04016007.
- Cominola, A., Giuliani, M. Castelletti, A., Resenberg, D. and Abdallah, A. (2018). Implications of data sampling resolution on water use simulation, end-use disaggregation, and demand management, Environ. Modell. Softw., 102, 199-212. https://doi.org/10.1016/j.envsoft.2017.11.022
- Cominola, A., Giuliani, M., Piga, D., Castelletti, A. and Rizzoli, A. (2015). Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review, Environ. Modell. Softw., 72, 198-214. https://doi.org/10.1016/j.envsoft.2015.07.012
- Creaco, E., Blokker, M. and Buchberger, S. (2017). Models for generating household water demand pulse: Literature review and comparison, J. Water Res. Plan. Man., 143(6), 04017013.
- Di Nardo, A., Di Natale, M., Gargano, R., Giudicianni, C., Greco, R. and Santonastaso, G. (2018). Performance of partitioned water distribution networks under sparial-temporal variability of water demand, Environ. Modell. Softw., 101, 128-136. https://doi.org/10.1016/j.envsoft.2017.12.020
- Gargano, R., Di Palma, F., De Marinis, G., Granata, F. and Greco, R. (2016). A stochastic approach for the water demand of residential end users, Urban Water J., 13(6), 569-582. https://doi.org/10.1080/1573062X.2015.1011666
- Gulisano, V., Almgren, M. and Papatriantafilou, M. (2014). "Online and scalable data validation in advanced metering infrastructure", In IEEE PES Innovative Smart Grid Technologies, Europe, IEEE, 1-6.
- Gurung, T., Stewart, R., Beal, C. and Sharma, A. (2016). Smart meter enabled informatics for economically efficient diversified water supply infrastructure planning, J. Clean Prod., 135, 1023-1033. https://doi.org/10.1016/j.jclepro.2016.07.017
- Kofinas, D., Mellios, N., Papageorgiou, E. and Laspidou, C. (2014). Urban water demand forecasting for the island of skiathos, Proced. Eng., 89, 1023-1030. https://doi.org/10.1016/j.proeng.2014.11.220
- Koo, K., Han, K., Jun, K., Lee, G., Kim, J. and Yum, K. (2021). Performance assessment for short-term water demand forecasting models on distinctive water uses in Korea, Sustainability, 13(11), 6056.
- Luciani, C., Casellato, F., Alvisi, S. and Franchini, M. (2019). Green smart technology for water (GST4Water): water loss identification at user level by using smart metering systgems, Water, 11(3), 405.
- Mayer, P. and DeOreo, W. (1999). Residential end uses of water, American Water Works Association Research Foundation(AWWARF), Denver, CO, United States.
- Osman, M., Abu-Mahfouz, A. and Page, P. (2018). A survey on data imputation techniques: Water distribution system as a use case, IEEE Access, 6, 63279-63291. https://doi.org/10.1109/ACCESS.2018.2877269
- Pesantez, J., Berglund, E. and Kaza, N. (2020). Smart meters data for modeling and forecasting water demand at the user-level, Environ. Modell. Softw., 125, 104633.
- Shang, F., Uber, J., Waanders, B. and Boccelli, D. (2006). "Real time water demand estimation in water distribution system", In Water Distribution Systems Analysis (WDSA) 2006, Cincinnati, OH, United States.
- Sonderlund, A., Smith, J., Hutton, C. and Kapelan, Z. (2014). Using smart meters for household water consumption feedback, Proced. Eng., 89, 990-997. https://doi.org/10.1016/j.proeng.2014.11.216
- Yoo, S. and Chae, K. (2001). Measuring the economic benefits of the ozone pollution control policy in Seoul: Results of a contingent valuation survey, Urban Stud., 38(1), 49-60. https://doi.org/10.1080/00420980020014802