• 제목/요약/키워드: Fusion welding

검색결과 261건 처리시간 0.026초

Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도 (Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds)

  • 박태준;공종판;나혜성;강정윤;엄상호;김정길;우인수;이종섭
    • Journal of Welding and Joining
    • /
    • 제28권3호
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(2) - STS 304 용접부 조직특성 및 고온균열 감수성에 미치는 질소의 영향 - (A Study of Weld Fusion Zone Phenomena in Austenitic Stainless Steels(2) - Effects of Nitrogen on Microstructural Evolution and Hot Cracking Susceptibility GTA Welds in STS 304 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • 제18권1호
    • /
    • pp.59-69
    • /
    • 2000
  • The purpose of the present study was to investigate weld metallurgical phenomena such as primary solidification mode, microstructural evolution and hot cracking susceptibility in nitrogen-bearing austenitic stainless steel GTA welds. Eight experimental heats varying nitrogen content from 0.007 to 0.23 wt.% were used in this study. Autogenous GTA welding was performed on weld coupons and the primary solidification mode and their microstructural characteristics were investigated from the fusion welds. Varestraint test was employed to evaluate the solidification cracking susceptibility of the heats and TCL(Total Crack Length) was used as cracking susceptibility index. The solidification mode shifted from primary ferrite to primary austenite with an increase in nitrogen content. Retained delta ferrite exhibited a variety of morphology as nitrogen content varied. The weld fusion zone exhibited duplex structure(austenite+ferrite) at nitrogen contents less than 0.10 wt.% but fully austenitic structure at nitrogen contents more than 0.20 wt.%. The weld fusion zone in alloys with about 0.15 wt.% nitrogen experienced primary austenite + primary ferrite solidification (mode AF) and contained delta ferrite less than 1% at room temperature. Regarding to solidification cracking susceptibility, the welds with fully austenitic structure exhibited high cracking susceptibility while those with duplex structure low susceptibility. The cracking susceptibility increased slowly with an increase in nitrogen content up to 0.20 wt.% but sharply as nitrogen content exceeded 0.20 wt.%, which was attributed to solidification mode shift fro primary ferrite to primary austenite single phase solidification.

  • PDF

질화처리된 저탄소강 레이저 용접부의 기공 감소 (Porosity Reduction in Laser Welding of Nitrided Carbon Steel)

  • 안영남;김철희;이원범;김정한
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.71-76
    • /
    • 2013
  • Gas nitriding is a surface hardening process where nitrogen is introduced into the surface of a ferrous alloy. During fusion welding of nitrided carbon steel, the nitride inside weld metal is dissolved and generates nitrogen gas, which causes porosities - blow holes and pits. In this study, several laser welding processes such as weaving welding, two-pass welding, dual beam welding and laser-arc hybrid welding were investigated to elongate the weld pool to enhance nitrogen gas evacuation. The surface pits were successfully eliminated with elongated weld pool. However blowholes inside the weld metal were effective reduced but not fully disappeared.

자동차용 엔지니어링 플라스틱의 접합조건 (Joining Condition of Engineering Plastic for Car)

  • 이정현;이우람
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.96-102
    • /
    • 2012
  • The current establishment of car engineering plastic piping polyethylene (PE) tube used as bonding state or part of the health or safety of fusion is very important. A part of these fusion methods to determine the soundness of the short-term trials and long-term tests can be largely classified. Typical tests included short-term strength, tensile strength, impact strength, compressive strength, resiliency and compression. Polyethylene (PE) pipes installed in the domestic terms of overall penetration rate of 45% has been used. However, polyethylene (PE) pipes have reliability problems, and these occurs mostly in part by defective welding. Therefore, the test is necessary for safety. Non-destructive methods (ultrasonic testing) are difficult to be used. Therefore, Polyethylene (PE) pipe are used. Fusion of thses materilas is necessary in these field however, its technical, and basic research has not been studied well. In this research, short-term strength of welding parts, its tensile strength, hardness, fatigue, and microstructure have been analyzed to find the optimum process conditions to improve mechanical properties.

Al-Si Coated Boron Steel과 Zn Coated DP Steel 이종금속의 DISK Laser 용접부 미세조직과 경도 (Microstructures and Hardness of DISK Laser Welds in Al-Si Coated Boron Steel and Zn Coated DP Steel)

  • 안용규;강정윤;김영수;김철희;한태교
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.90-98
    • /
    • 2011
  • Al-Si coated Boron steel and Zn coated DP steel were welded using DISK laser and the microstructure and hardness of the weld were investigated. Full penetration was obtained, when the welding speed was lower than 4m/min. In the specimen welded with laser power of 3 kW and welding speed of 2 m/min, the hardness was the highest in the heat affect zone in the boron steel (HAZ-B) and that of the heat affect zone in the DP steel (HAZ-D) was lower than HAZ-B. The hardness of fusion zone was in between those of HAZ-B and HAZ-D. The decreased hardness from each HAZ to base metal(BM) could be explained that ferrite contents increases when access to the BM. The variation of hardness in the welds could be explained by the difference of microstructure, that is, full martensite in HAZ-B, mixture of martensite and bainite in the fusion zone, and the mixture of martensite, ferrite and bainite in HAZ-D.

고질소계 강의 열처리재 및 용접부의 기계적성질 저하에 관한 연구 (A Study on the Degradation of Mechanical Properties in High Nitrogen Steel Following Heat Treatments and Welding)

  • 권일현;윤재영;정세희
    • Journal of Welding and Joining
    • /
    • 제16권3호
    • /
    • pp.121-128
    • /
    • 1998
  • The degradation of mechanical properties in the high nitrogen steel HN3 developed for nuclear fusion reactor has been evaluated quantitatively using the small punch(SP) test, X-ray diffraction (XRD) analysis has also been conducted to identify carbides or nitrides precipitated on grain boundaries of the heat treated samples. Mechanical properties of the steel HN3 significantly decreased with increasing heat treatment time and temperature or with decreasing testing temperature. Combination of XRD and metallurgical observation, revealed that the material degradation in the thermally aged steel was caused by precipitation of carbides on the grain boundaries. While the weld metal showed the lowest mechanical properties among various microstructures in GTA weldments. By combining SP test and XRD analysis, cryogenic fracture behaviors and aging degradation for high nitrogen steel could be successfully evaluated in nondestructive manner.

  • PDF

저온용 강재 Electro Gas 용접부 물성에 미치는 모재와 용접 입열의 영향 (Effect of base metal and welding heat input on the properties of low temperature steel welds made by Electro Gas Welding)

  • 성희준;구연백;김경주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.51-51
    • /
    • 2009
  • In order to understand the properties of high heat input welds made by electro gas welding, two kinds of low temperature steel were welded. Welding heat inputs were controlled by width of root gap and ranged from 118 to 143kJ/cm. Chemical composition and micro-structural analysis were performed. To understand low temperature impact properties, Charpy impact test was conducted at several temperatures. The results were summarized as follows; 1) Grain size of weld metal and heat affected zone was increased with an increase in welding heat input. 2) Impact test values at fusion line were severely fluctuated regardless of base metals, showing enormous difference among the values at the same test temperature.

  • PDF

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

레이저용접에서 알루미늄 도금량이 용접성에 미치는 영향 (Effect of Coating Weight on the Laser Weldability in the Welding of Aluminized Steels)

  • 김기철;차준호
    • 한국재료학회지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Laser weldability of aluminized steels for deep drawing application has been investigated. Test coupons for Nd:YAG laser welding and $CO_2$ laser welding were prepared trom the commercial steels. According to the test results, total penetration and back bead width of aluminized steels were sensitive to the welding conditions. Bead width at the half thickness of the overlap joint, however, was rather constant. Laser weldability of aluminized steels was superior to that of zinc coated steel. Weld microstructure revealed that overlap zone adjacent to the fusion line was filled with coated materials, which was thought to be desirable to protect weld from crevice corrosion. The aluminum coated materials was also found in the weld metal. Practically no spattering was observed in the laser welding of aluminized steels even when the welding was performed without joint gap. In the welding of zinc coated steel, however, spattering was so severe that it was difficult to get the acceptable weld. Bead quality of aluminized steel laser weld was smooth and stable.

인코넬 713C 합금의 레이저 용접성 평가 (Evaluation of the Laser Weldability of Inconel 713C alloy)

  • 강민정;김철희;김영민
    • Journal of Welding and Joining
    • /
    • 제35권1호
    • /
    • pp.68-73
    • /
    • 2017
  • During welding of Ni based superalloy, hot cracking was usually happen in the fusion zone of a weld. In this study, the laser weldability of Inconel 713C alloy for the turbocharger wastegate valve (WGV) was evaluated with various welding conditions, such as laser power, welding speed, shielding gas. Welding conditions were optimized by bead-on-plate (BOP) and butt joint welding. For the evaluation of laser weldability, bead shapes and weld microstructures were investigated and tensile test was conducted. The fracture surfaces were investigated for the understanding the cause of the fracture.