스마트폰 시장이 성숙기에 들어서면서 새로운 성장동력으로 웨어러블 컴퓨터가 주목받고 있다. 웨어러블 컴퓨팅 시스템은 무선 네트워크 기술, 임베디드 기술, 센서 기술, 신소재 기술 등 다양한 기술의 복합적인 융합체이다. 이러한 특징들은 기존의 소프트웨어가 가지고 있는 품질특성 이외에 활용성, 이동성 등의 특성을 내포하고 있기 때문에 국제표준인 ISO/IEC 9126의 표준만으로 정확한 품질 평가를 하기에는 어려움이 따른다. 본 논문에서는 이러한 필요성에 따라 기존의 ISO/IEC 9126과 웨어러블 컴퓨팅의 특징에 의해 도출된 품질특성을 추가해 웨어러블 컴퓨터 품질평가모델을 제안하였다. 웨어러블 컴퓨터 품질평가모델의 개발을 위해 웨어러블 컴퓨터의 기능적 요구사항과 품질특성을 도출하여 메트릭과 품질 기준을 제안하였다. 본 연구에서는 시나리오에 제안된 모델을 적용하고 S사, L사, G사의 웨어러블 기기의 품질을 비교하여 품질평가모델의 실용성을 확인하였다. 본 연구에서 제안한 평가모델은 웨어러블 컴퓨터의 품질평가를 위한 가이드라인으로 활용할 수 있을 것으로 기대된다.
본 연구에서는 UAV (Unmanned Aerial Vehicle)와 PlanetScope 위성영상을 함께 이용한 붕괴건물 탐지를 수행하여 지표면에 위치한 특정 객체 탐지에 있어 이종 센서의 활용 가능성을 제시하였다. 이를 위해 지난해 4월 산불 피해로 붕괴된 20여 채의 건물들이 있는 곳을 실험장소로 선정하였다. 붕괴건물 탐지를 위해 1차적으로 객체기반 분할을 수행한 고해상도의 UAV 영상을 이용해 ExG (Excess Green), GLCM (Gray-Level Co-occurrence Matrix) 그리고 DSM (Digital Surface Model)과 같은 객체들의 특징(feature) 정보를 생성한 후 이를 붕괴건물 후보군 탐지에 이용하였다. 이 과정에서 탐지정확도 향상을 위해 PlanetScope를 이용한 변화탐지 결과를 함께 사용하였으며 이를 시드 화소(seed pixles)로 사용하여 붕괴건물 후보군에서 오탐지된 영역과 과탐지된 영역을 수정 및 보완하였다. 최종적인 탐지 결과는 참조 영상을 통해 그 성능을 분석하였으며 UAV 영상만을 이용한 붕괴건물 후보군 탐지 결과와 UAV 그리고 PlanetScope 영상을 함께 사용했을 때의 결과의 정확도를 비교, 분석하였다. 그 결과 UAV 영상만을 이용해 탐지한 붕괴건물의 정확도는 0.4867 F1-score를 가지며 UAV와 PlanetScope 영상을 함께 사용했을 때의 결과는 0.8064 F1-score로 그 값이 상승하였다. Kappa 지수 또한 0.3674에서 0.8225로 향상된 것을 확인할 수 있었다.
최근 건축정보 분야에서는 터널, 교량 등 도시의 인프라에도 건축정보모델링(BIM: Building Information Modeling)이 적용되면서 대형화된 도시 건축물의 유지 및 관리를 위해 BIM 뿐만 아니라 건물의 외부환경에 대한 정보가 필요하게 되었다. 또한, 건축물정보모델 및 도시/지리정보 모델 간 정보의 상호운용성을 바탕으로 다양한 시뮬레이션 및 도시계획, 국토보안 등 기타 응용프로그램에서의 상당한 이익과 발전을 가져올 수 있다는 관점에서 공간정보와 빅 데이터의 융합은 강한 잠재력을 지니고 있다. 이에 본 연구에서는 건축정보 분야의 개방형 BIM(open BIM) 표준모델인 IFC(Industry Foundation Classes)와 GIS분야의 표준모델인 CityGML의 정보를 효율적으로 연계하기 위해 IFC와 CityGML, LandXML의 정보체계 및 형상표현의 차이점을 비교분석하였으며 공간정보 분석을 위한 객체기반의 건축 도시통합모델의 개발방향을 제시하고 BIM과 GIS 간의 기초 융합전략 및 활용방안을 마련하고자 하였다.
이동 Ad hoc 네트워크 (MANET: Mobile Ad-hoc Network)는 기존의 통신 인프라의 구축 여부와 무관하게 무선 단말기간의 통신이 가능한 네트워크이다. Ad hoc 네트워크는 음영지역, 재난지역, 전쟁 시와 같은 통신 인프라가 구축되기 어려운 상황에서 유용하게 사용 될 수 있다. 그러나 음성 및 데이터 서비스 등과 같은 무선 서비스의 제공을 위해 많은 양의 네트워크 용량이 필요하게 되지만 기존의 제한된 주파수 자원에 따른 주파수 부족 상황 및 주파수 자원정책의 규제에 따라 원활한 주파수 사용이 어려운 상황이다. 이에 따라 높은 주파수 활용을 제공하는 무선 인지 시스템이 Ad-hoc네트워크에 적용하여 보다 다양하고 확장된 네트워크 서비스를 제공할 수 있다. 따라서, 본 논문에서는 AWGN 과 Rayleigh 채널 환경에서, 기존의 단일 스펙트럼 센싱 및 협력 스펙트럼 센싱과 비교하여 Ad-hoc 네트워크가 적용된 무선인지 시스템에서의 스펙트럼 센싱의 성능이 향상됨을 모의실험 및 성능 분석을 통하여 나타내었다.
Internet of Things (IoT) is considered the future network to support wireless communications. To realize an IoT network, sufficient spectrum should be allocated for the rapidly increasing IoT devices. Through cognitive radio, unlicensed IoT devices exploit cooperative spectrum sensing (CSS) to opportunistically access a licensed spectrum without causing harmful interference to licensed primary users (PUs), thereby effectively improving the spectrum utilization. However, an open access cognitive IoT allows abnormal IoT devices to undermine the CSS process. Herein, we first establish a hard-combining attack model according to the malicious behavior of falsifying sensing data. Subsequently, we propose a weighted sequential hypothesis test (WSHT) to increase the PU detection accuracy and decrease the sampling number, which comprises the data transmission status-trust evaluation mechanism, sensing data availability, and sequential hypothesis test. Finally, simulation results show that when various attacks are encountered, the requirements of the WSHT are less than those of the conventional WSHT for a better detection performance.
The military is facing a continuous decrease in personnel, and in order to cope with potential accidents and challenges in operations, efforts are being made to reduce the direct involvement of personnel by utilizing the latest technologies. Recently, the use of various sensors related to Manned-Unmanned Teaming and artificial intelligence technologies has gained attention, emphasizing the need for flexible utilization methods. In this paper, we propose four dataset construction methods that can be used for effective training of robots that can be deployed in military operations, utilizing not only RGB image data but also data acquired from IR image sensors. Since there is no publicly available dataset that combines RGB and IR image data, we directly acquired the dataset within buildings. The input values were constructed by combining RGB and IR image sensor data, taking into account the field of view, resolution, and channel values of both sensors. We compared the proposed method with conventional RGB image data classification training using the same learning model. By employing the proposed image data fusion method, we observed improved stability in training loss and approximately 3% higher accuracy.
Additive Manufacturing (AM) is a process that fabricates products by manufacturing materials according to a three-dimensional model. It has recently gained attention due to its environmental advantages, including reduced energy consumption and high material utilization rates. However, controlling defects such as melting issues and residual stress, which can occur during metal additive manufacturing, poses a challenge. The trial-and-error verification of these defects is both time-consuming and costly. Consequently, efforts have been made to develop phenomenological models that understand the influence of process variables on defects, and mechanical/ electrical/thermal properties of geometrically complex products. This paper introduces modeling techniques that can simulate the powder additive manufacturing process. The focus is on representative metal additive manufacturing processes such as Powder Bed Fusion (PBF), Direct Energy Deposition (DED), and Binder Jetting (BJ) method. To calculate thermal-stress history and the resulting deformations, modeling techniques based on Finite Element Method (FEM) are generally utilized. For simulating the movements and packing behavior of powders during powder classification, modeling techniques based on Discrete Element Method (DEM) are employed. Additionally, to simulate sintering and microstructural changes, techniques such as Monte Carlo (MC), Molecular Dynamics (MD), and Phase Field Modeling (PFM) are predominantly used.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권4호
/
pp.1208-1222
/
2014
Due to the low utilization and scarcity of frequency spectrum in current spectrum allocation methodology, cognitive radio networks (CRNs) have been proposed as a promising method to solve the problem, of which spectrum sensing is an important technology to utilize the precious spectrum resources. In order to protect the primary user from being interfered, most of the related works focus only on the restriction of the missed detection probability, which may causes over-protection of the primary user. Thus the interference probability is defined and the interference-aware sensing model is introduced in this paper. The interference-aware sensing model takes the spatial conditions into consideration, and can further improve the network performance with good spectrum reuse opportunity. Meanwhile, as so many fading factors affect the spectrum channel, errors are inevitably exist in the reporting channel in cooperative sensing, which is improper to be ignored. Motivated by the above, in this paper, we study the throughput tradeoff for interference-aware cognitive radio networks over imperfect reporting channel. For the cooperative spectrum sensing, the K-out-of-N fusion rule is used. By jointly optimizing the sensing time and the parameter K value, the maximum throughput can be achieved. Theoretical analysis is given to prove the feasibility of the optimization and computer simulations also shows that the maximum throughput can be achieved when the sensing time and the parameter of K value are both optimized.
본 논문에서는 열화상 이미지에서의 열 데이터 추출 및 해당 데이터를 사용한 발열 설비 탐지 향상 기법을 제안한다. 주요 목표는 열화상 이미지에서 바이트 단위로 데이터를 해석하여 열 데이터와 실화상 이미지를 추출하고 해당 이미지와 데이터를 합성한 합성 이미지를 딥러닝 모델에 적용하여 발열 설비의 탐지 정확도를 향상 시키는 것이다. 데이터는 한국수력원자력발전소 설비 데이터를 사용하였으며, 학습 모델로는 Faster-RCNN을 사용하여 각 데이터 그룹에 따른 딥러닝 탐지 성능을 비교 평가한다. 제안한 방식은 Average Precision 평가에서 기존 방식에 비해 평균 0.17 향상 되었다.본 연구는 이로서 국가 데이터 기반 열화상 데이터와 딥러닝 탐지의 접목을 시도하여 유효한 데이터 활용도 향상을 이루었다.
본 연구는 중소기업 대표자역량이 매출채권관리와 경영성과에 미치는 영향을 설문자료를 사용하여 실증적으로 분석하였다. 연구모형은 탐색적 요인분석 및 신뢰성분석, 확인적 요인분석, 모형 적합도 검증을 통해 확정하고, 구조방정식모형으로 연구가설을 검증하였다. 검증결과 관리자역량은 매출채권관리에 정(+)의 영향을, 기업가역량은 신용통제관리에 부(-)의 영향을 미쳤다. 매출채권관리는 경영성과에 정(+)의 영향을 미쳤다. 매개효과 가설검증에서 신용판매관리는 기업가역량과 경영성과 간의 영향에 정(+)의 영향을, 신용통제관리는 부(-)의 영향을 미쳤다. 연구는 중소기업의 매출채권관리에서 대표자역량이 중요한 요인이며, 경영성과 제고를 위해 대표의 재무, 경영자원 활용, 매출채권 지식 등 관리역량 함양이 필요함을 시사한다. 또한, 안정적 매출채권 관리를 위해 보험가입, 거래처 신용평가 등 객관적 정보에 기반한 매출채권관리가 필요함을 시사한다. 향후 컨설팅, 정부지원 등 외부요인과 매출채권 관리와의 영향 연구가 요구된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.