• Title/Summary/Keyword: Fusion strategy

Search Result 184, Processing Time 0.023 seconds

Fusion Approach for Optimizing Web Search Performance (웹 검색 성능 최적화를 위한 융합적 방식)

  • Yang, Kiduk
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.1
    • /
    • pp.7-22
    • /
    • 2015
  • This paper describes a Web search optimization study that investigates both static and dynamic tuning methods for optimizing system performance. We extended the conventional fusion approach by introducing the "dynamic tuning" process with which to optimize the fusion formula that combines the contributions of diverse sources of evidence on the Web. By engaging in iterative dynamic tuning process, where we successively fine-tuned the fusion parameters based on the cognitive analysis of immediate system feedback, we were able to significantly increase the retrieval performance. Our results show that exploiting the richness of Web search environment by combining multiple sources of evidence is an effective strategy.

Fusion Strategy on Heterogeneous Information Sources for Improving the Accuracy of Real-Time Traffic Information (실시간 교통정보 정확도 향상을 위한 이질적 교통정보 융합 연구)

  • Kim, Jong-Jin;Chung, Younshik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.67-74
    • /
    • 2022
  • In recent, the number of real-time traffic information sources and providers has increased as increasing smartphone users and intelligent transportation system facilities installed at roadways including vehicle detection system (VDS), dedicated short-ranged communications (DSRC), and global positioning system (GPS) probe vehicle. The accuracy of such traffic information would vary with these heterogeneous information sources or spatiotemporal traffic conditions. Therefore, the purpose of this study is to propose an empirical strategy of heterogeneous information fusion to improve the accuracy of real-time traffic information. To carry out this purpose, travel speed data collection based on the floating car technique was conducted on 227 freeway links (or 892.2 km long) and 2,074 national highway links (or 937.0 km long). The average travel speed for 5 probe vehicles on a specific time period and a link was used as a ground truth measure to evaluate the accuracy of real-time heterogeneous traffic information for that time period and that link. From the statistical tests, it was found that the proposed fusion strategy improves the accuracy of real-time traffic information.

An A2CL Algorithm based on Information Optimization Strategy for MMRS

  • Dong, Qianhui;Li, Yibing;Sun, Qian;Tian, Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1603-1623
    • /
    • 2020
  • Multiple Mobile Robots System (MMRS) has shown many attractive features in lots of real-world applications that motivate their rapid and wide diffusion. In MMRS, the Cooperative Localization (CL) is the basis and premise of its high-performance task. However, the statistical characteristics of the system noise should be already known in traditional CL algorithms, which is difficult to satisfy in actual MMRS because of the numerous of disturbances form the complex external environment. So the CL accuracy will be reduced. To solve this problem, an improved Adaptive Active Cooperative Localization (A2CL) algorithm based on information optimization strategy for MMRS is proposed in this manuscript. In this manuscript, an adaptive information fusion algorithm based on the variance component estimation under Extended Kalman filter (VCEKF) method for MMRS is introduced firstly to enhance the robustness and accuracy of information fusion by estimating the covariance matrix of the system noise or observation noise in real time. Besides, to decrease the effect of observation uncertainty on CL accuracy further, an observation optimization strategy based on information theory, the Model Predictive Control (MPC) strategy, is used here to maximize the information amount from observations. And semi-physical simulation experiments were carried out to verity the A2CL algorithm's performance finally. Results proved that the presented A2CL algorithm based on information optimization strategy for MMRS cannot only enhance the CL accuracy effectively but also have good robustness.

Fuzzy Neural Network Based Sensor Fusion and It's Application to Mobile Robot in Intelligent Robotic Space

  • Jin, Tae-Seok;Lee, Min-Jung;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • In this paper, a sensor fusion based robot navigation method for the autonomous control of a miniature human interaction robot is presented. The method of navigation blends the optimality of the Fuzzy Neural Network(FNN) based control algorithm with the capabilities in expressing knowledge and learning of the networked Intelligent Robotic Space(IRS). States of robot and IR space, for examples, the distance between the mobile robot and obstacles and the velocity of mobile robot, are used as the inputs of fuzzy logic controller. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a sensor fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process. Preliminary experiment and results are shown to demonstrate the merit of the introduced navigation control algorithm.

AUTOMATIC BUILDING EXTRACTION BASED ON MULTI-SOURCE DATA FUSION

  • Lu, Yi Hui;Trinder, John
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.248-250
    • /
    • 2003
  • An automatic approach and strategy for extracting building information from aerial images using combined image analysis and interpretation techniques is described in this paper. A dense DSM is obtained by stereo image matching. Multi-band classification, DSM, texture segmentation and Normalised Difference Vegetation Index (NDVI) are used to reveal building interest areas. Then, based on the derived approximate building areas, a shape modelling algorithm based on the level set formulation of curve and surface motion has been used to precisely delineate the building boundaries. Data fusion, based on the Dempster-Shafer technique, is used to interpret simultaneously knowledge from several data sources of the same region, to find the intersection of propositions on extracted information derived from several datasets, together with their associated probabilities. A number of test areas, which include buildings with different sizes, shape and roof colour have been investigated. The tests are encouraging and demonstrate that the system is effective for building extraction, and the determination of more accurate elevations of the terrain surface.

  • PDF

Study on Fusion Proposal of Creativity Management and Management Quality for Airport Authorities - Focus of Fusion Management System Model Development - (공항기관을 위한 창의성경영과 경영품질 융합 방안에 관한 연구 - 융합경영시스템 모델 개발을 중심으로 -)

  • Lee, Yung-Kil;Kim, Ki-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1194-1211
    • /
    • 2011
  • The main research purpose of this paper is developed to Fusion Management System Model that is competition advantage and excellence airport for the airport authorities. Fusion Management System Model is developed to fuse and convert how is consist of creativity management and management quality system. Fusion management system structure is as follow. Firstly, part of foundation configured to philosophy and intention of CEO, company as like university and value-based creative corporate culture. Secondly, part of body is applied that is process by 6sigma, system by ISO9001. Thirdly, part of head is applied that is strategy and evaluation by Malcolm Baldrige National Quality Award of U.S.A. Also, system connected to synergy line that is creativity management, fusion & convergence and trust. Finally, this system has been researched to the practical perspective in order to realize for airport authorities.

Color Space Exploration and Fusion for Person Re-identification (동일인 인식을 위한 컬러 공간의 탐색 및 결합)

  • Nam, Young-Ho;Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1782-1791
    • /
    • 2016
  • Various color spaces such as RGB, HSV, log-chromaticity have been used in the field of person re-identification. However, not enough studies have been done to find suitable color space for the re-identification. This paper reviews color invariance of color spaces by diagonal model and explores the suitability of each color space in the application of person re-identification. It also proposes a method for person re-identification based on a histogram refinement technique and some fusion strategies of color spaces. Two public datasets (ALOI and ImageLab) were used for the suitability test on color space and the ImageLab dataset was used for evaluating the feasibility of the proposed method for person re-identification. Experimental results show that RGB and HSV are more suitable for the re-identification problem than other color spaces such as normalized RGB and log-chromaticity. The cumulative recognition rates up to the third rank under RGB and HSV were 79.3% and 83.6% respectively. Furthermore, the fusion strategy using max score showed performance improvement of 16% or more. These results show that the proposed method is more effective than some other methods that use single color space in person re-identification.

New Medical Image Fusion Approach with Coding Based on SCD in Wireless Sensor Network

  • Zhang, De-gan;Wang, Xiang;Song, Xiao-dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2384-2392
    • /
    • 2015
  • The technical development and practical applications of big-data for health is one hot topic under the banner of big-data. Big-data medical image fusion is one of key problems. A new fusion approach with coding based on Spherical Coordinate Domain (SCD) in Wireless Sensor Network (WSN) for big-data medical image is proposed in this paper. In this approach, the three high-frequency coefficients in wavelet domain of medical image are pre-processed. This pre-processing strategy can reduce the redundant ratio of big-data medical image. Firstly, the high-frequency coefficients are transformed to the spherical coordinate domain to reduce the correlation in the same scale. Then, a multi-scale model product (MSMP) is used to control the shrinkage function so as to make the small wavelet coefficients and some noise removed. The high-frequency parts in spherical coordinate domain are coded by improved SPIHT algorithm. Finally, based on the multi-scale edge of medical image, it can be fused and reconstructed. Experimental results indicate the novel approach is effective and very useful for transmission of big-data medical image(especially, in the wireless environment).

Impact of Iron Scavenging and Desorption Parameters on Chlorophyll Simulation in the Tropical Pacific within NEMO-TOPAZ

  • Lee, Hyomee;Moon, Byung-Kwon;Park, Jong-Yeon;Kim, Han-Kyoung;Jung, Hyun-Chae;Wie, Jieun;Park, Hyo Jin;Byun, Young-Hwa;Lim, Yoon-Jin;Lee, Johan
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.390-400
    • /
    • 2021
  • Ocean biogeochemistry plays a crucial role in sustaining the marine ecosystem and global carbon cycle. To investigate the oceanic biogeochemical responses to iron parameters in the tropical Pacific, we conducted sensitivity experiments using the Nucleus for European Modelling of the Ocean-Tracers of Ocean Phytoplankton with Allometric Zooplankton (NEMO-TOPAZ) model. Compared to observations, the NEMO-TOPAZ model overestimated the concentrations of chlorophyll and dissolved iron (DFe). The sensitivity tests showed that with increasing (+50%) iron scavenging rates, chlorophyll concentrations in the tropical Pacific were reduced by approximately 16%. The bias in DFe also decreased by approximately 7%; however, the sea surface temperature was not affected. As such, these results can facilitate the development of the model tuning strategy to improve ocean biogeochemical performance using the NEMO-TOPAZ model.

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.