International journal of advanced smart convergence
/
제9권1호
/
pp.193-201
/
2020
The main objective of this study is to investigate the impact of additional modalities on the performance of emotion recognition using speech, facial expression and physiological measurements. In order to compare different approaches, we designed a feature-based recognition system as a benchmark which carries out linear supervised classification followed by the leave-one-out cross-validation. For the classification of four emotions, it turned out that bimodal fusion in our experiment improves recognition accuracy of unimodal approach, while the performance of trimodal fusion varies strongly depending on the individual. Furthermore, we experienced extremely high disparity between single class recognition rates, while we could not observe a best performing single modality in our experiment. Based on these observations, we developed a novel fusion method, called parametric decision fusion (PDF), which lies in building emotion-specific classifiers and exploits advantage of a parametrized decision process. By using the PDF scheme we achieved 16% improvement in accuracy of subject-dependent recognition and 10% for subject-independent recognition compared to the best unimodal results.
현재 대부분의 생체인증 시스템은 단일 생체정보를 이용하여 사용자를 인증하고 있는데, 이러한 방식은 노이즈로 인한 문제, 데이터에 대한 민감성 문제, 스푸핑, 인식률의 한계 등 많은 문제점들을 가지고 있다. 이를 해결하기 위한 방법 중 하나로 다중 생체정보를 이용하는 방법이 제시되고 있다. 다중 생체인증 시스템은 각각의 생체정보에 대해서 information fusion을 수행하여 새로운 정보를 생성한 뒤, 그 정보를 활용하여 사용자를 인증하는 방식이다. Information fusion 방법들 중에서 score-level fusion 방법을 보편적으로 많이 사용한다. 하지만 정규화 작업이 필요하다는 문제점을 갖고 있고, 데이터가 같아도 정규화 방법에 따라 인식률이 달라진다는 문제점을 갖고 있다. 이에 대한 대안으로 정규화 작업이 필요 없는 rank-level fusion 방법이 제시되고 있다. 하지만 기존의 rank-level fusion 방법들은 score-level fusion 방법보다 인식률이 낮다. 이러한 문제점을 해결하기 위해 상관계수를 이용하여 score-level fusion 방법보다 인식률이 높은 rank-level fusion 방법을 제안한다. 실험은 홍채정보(CASIA V3)와 얼굴정보(FERET V1)를 이용하여 기존의 존재하는 rank-level fusion 방법들의 인식률과 본 논문에서 제안하는 fusion 방법의 인식률을 비교하였다. 또한 score-level fusion 방법들과도 인식률을 비교하였다. 그 결과로 인식률이 약 0.3%에서 3.3%까지 향상되었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권2호
/
pp.810-831
/
2019
Recently, continuous dimensional emotion recognition from audiovisual clues has attracted increasing attention in both theory and in practice. The large amount of data involved in the recognition processing decreases the efficiency of most bimodal information fusion algorithms. A novel algorithm, namely the incomplete Cholesky decomposition based kernel cross factor analysis (ICDKCFA), is presented and employed for continuous dimensional audiovisual emotion recognition, in this paper. After the ICDKCFA feature transformation, two basic fusion strategies, namely feature-level fusion and decision-level fusion, are explored to combine the transformed visual and audio features for emotion recognition. Finally, extensive experiments are conducted to evaluate the ICDKCFA approach on the AVEC 2016 Multimodal Affect Recognition Sub-Challenge dataset. The experimental results show that the ICDKCFA method has a higher speed than the original kernel cross factor analysis with the comparable performance. Moreover, the ICDKCFA method achieves a better performance than other common information fusion methods, such as the Canonical correlation analysis, kernel canonical correlation analysis and cross-modal factor analysis based fusion methods.
Most methods for fusion-based finger vein recognition were to fuse different features or matching scores from more than one trait to improve performance. To overcome the shortcomings of "the curse of dimensionality" and additional running time in feature extraction, in this paper, we propose a finger vein recognition technology based on matching score-level fusion of a single trait. To enhance the quality of finger vein image, the contrast-limited adaptive histogram equalization (CLAHE) method is utilized and it improves the local contrast of normalized image after ROI detection. Gabor features are then extracted from eight channels based on a bank of Gabor filters. Instead of using the features for the recognition directly, we analyze the contributions of Gabor feature from each channel and apply a weighted matching score-level fusion rule to get the final matching score, which will be used for the last recognition. Experimental results demonstrate the CLAHE method is effective to enhance the finger vein image quality and the proposed matching score-level fusion shows better recognition performance.
Although researchers have proposed numerous techniques for speech emotion recognition, its performance remains unsatisfactory in many application scenarios. In this study, we propose a speech emotion recognition model based on a genetic algorithm (GA)-decision tree (DT) fusion of deep and acoustic features. To more comprehensively express speech emotional information, first, frame-level deep and acoustic features are extracted from a speech signal. Next, five kinds of statistic variables of these features are calculated to obtain utterance-level features. The Fisher feature selection criterion is employed to select high-performance features, removing redundant information. In the feature fusion stage, the GA is is used to adaptively search for the best feature fusion weight. Finally, using the fused feature, the proposed speech emotion recognition model based on a DT support vector machine model is realized. Experimental results on the Berlin speech emotion database and the Chinese emotion speech database indicate that the proposed model outperforms an average weight fusion method.
International Journal of Fuzzy Logic and Intelligent Systems
/
제8권2호
/
pp.105-110
/
2008
Human being recognizes emotion fusing information of the other speech signal, expression, gesture and bio-signal. Computer needs technologies that being recognized as human do using combined information. In this paper, we recognized five emotions (normal, happiness, anger, surprise, sadness) through speech signal and facial image, and we propose to method that fusing into emotion for emotion recognition result is applying to multimodal method. Speech signal and facial image does emotion recognition using Principal Component Analysis (PCA) method. And multimodal is fusing into emotion result applying fuzzy membership function. With our experiments, our average emotion recognition rate was 63% by using speech signals, and was 53.4% by using facial images. That is, we know that speech signal offers a better emotion recognition rate than the facial image. We proposed decision fusion method using S-type membership function to heighten the emotion recognition rate. Result of emotion recognition through proposed method, average recognized rate is 70.4%. We could know that decision fusion method offers a better emotion recognition rate than the facial image or speech signal.
얼굴인식은 이미지의 많은 변동(표정, 조명, 얼굴의 방향 등)으로 인해 한 가지 인식 방법으로는 높은 인식률을 얻기 어렵다. 이러한 어려움을 해결하기 위해, 여러 가지 정보를 융합시키는 데이터 퓨전 방법이 연구되었다. 기존의 데이터 퓨전 방법은 보조적인 생체 정보(지문, 음성 등)를 융합하여 얼굴인식기를 보조하는 방식을 취하였다. 이 논문에서는 보조적인, 생체 정보를 사용하지 않고, 기존의 얼굴인식방법을 통해 얻어지는 상호보완적인 정보를 융합하여 사용하였다. 개별적인 얼굴인식기의 정보를 융합하기 위해, 전체적으로는 Dempster-Shafer의 퓨전이론에 근거하면서, 핵심이 되는 질량함수를 새로운 방식으로 재정의학 퓨전모델을 제안하였다. 제안된 퓨전모델을 사용하여 개별적인 얼굴인식기의 정보를 융합한 결과, 보조적인 생체정보 없이, 개별적인 얼굴인식기보다 나은 인식률을 얻을 수 있었다.
Aiming Graph convolutional networks (GCNs) have achieved outstanding performances on skeleton-based action recognition. However, several problems remain in existing GCN-based methods, and the problem of low recognition rate caused by single input data information has not been effectively solved. In this article, we propose a Dual-stream fusion method that combines video data and skeleton data. The two networks respectively identify skeleton data and video data and fuse the probabilities of the two outputs to achieve the effect of information fusion. Experiments on two large dataset, Kinetics and NTU-RGBC+D Human Action Dataset, illustrate that our proposed method achieves state-of-the-art. Compared with the traditional method, the recognition accuracy is improved better.
Kim, Ji-Kyoung;Oh, Yeong-Jae;Chong, Kab-Sung;Wee, Jae-Woo;Lee, Chong-Ho
대한전기학회:학술대회논문집
/
대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
/
pp.107-109
/
2004
In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile information. The proposed system focuses on improving recognition performance of 3D object. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse these informations. Tactual signals are obtained from the reaction force by the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of teaming iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though visual information has a defect. The experimental results show that the proposed system can improve recognition rate and reduce learning time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme of 3D object.
Human being recognizes the physical world by integrating a great variety of sensory inputs, the information acquired by their own action, and their knowledge of the world using hierarchically parallel-distributed mechanism. In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile informations. The proposed system focuses on improving recognition performance of 3D objects. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse the two sensory signals. Tactual signals are obtained from the reaction force of the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of learning iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though the visual sensory signals get defects. The experimental results show that the proposed system can improve recognition rate and reduce teeming time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme for 3D objects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.