• Title/Summary/Keyword: Fusion gene

Search Result 607, Processing Time 0.02 seconds

Identification of a Gene for Aerobic Growth with a SoxS Binding Sequence in Escherichia coli by Operon Fusion Techniques

  • Lee, Yong-Chan;Kwon, Hyung-Bae;Lee, Sang-Ho;Kwon, Hye-Won;Sung, Ha-Chin;Kim, Joon;Choe, Mu-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1115-1119
    • /
    • 2001
  • Eight Escherichia coli cells with aerobic growth deflects were isolated by the insertion of ${\lambda}placMu53$, a hybrid bacteriophage of ${\lambda}$ and Mu, which created transcriptional fusion to lacZY. Two of these mutants, CLIO and CLl2, were irradiated with UV to obtain specialized transducing phages. The phages that took out the neighboring chromosomal DNA of the related gene responsible for deflective aerobic growth were identified. The in vivo cloned chromosomal sequence revealed that the mutated gene of CLIO was located at min 34.5 on the Escherichia coli linkage map and 1,599,515 on the physical map. The physical map indicated that there were 7 cistrons in the operon. We named this operon oxg10. The promoter sequence of oxg10 exhibited a possible binding site far SoxS, a transcriptional regulator that activates the transcription of various SoxRS regulon genes. Transferring the oxg10:: ${\lambda}placMu53$ mutation into the wild-type strain, RZ4500, resulted in the inhibition of normal aerobic growth, while the salute mutation in strain MO inhibited aerobic cell growth completely. The full operon sequences of oxg10 were cloned from the Excherichia coli genomic library. The mutated gene of CLl2 was identified to be a sucA gene encoding the ${\alpha}$-ketoglutarate dehydrogenase El component in the TCA cycle.

  • PDF

Novel Bacterial Surface Display System Based on the Escherichia coli Protein MipA

  • Han, Mee-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1097-1103
    • /
    • 2020
  • Bacterial surface display systems have been developed for various applications in biotechnology and industry. Particularly, the discovery and design of anchoring motifs is highly important for the successful display of a target protein or peptide on the surface of bacteria. In this study, an efficient display system on Escherichia coli was developed using novel anchoring motifs designed from the E. coli mipA gene. Using the C-terminal fusion system of an industrial enzyme, Pseudomonas fluorescens lipase, six possible fusion sites, V140, V176, K179, V226, V232, and K234, which were truncated from the C-terminal end of the mipA gene (MV140, MV176, MV179, MV226, MV232, and MV234) were examined. The whole-cell lipase activities showed that MV140 was the best among the six anchoring motifs. Furthermore, the lipase activity obtained using MV140 as the anchoring motif was approximately 20-fold higher than that of the previous anchoring motifs FadL and OprF but slightly higher than that of YiaTR232. Western blotting and confocal microscopy further confirmed the localization of the fusion lipase displayed on the E. coli surface using the truncated MV140. Additionally the MV140 motif could be used for successfully displaying another industrial enzyme, α-amylase from Bacillus subtilis. These results showed that the fusion proteins using the MV140 motif had notably high enzyme activities and did not exert any adverse effects on either cell growth or outer membrane integrity. Thus, this study shows that MipA can be used as a novel anchoring motif for more efficient bacterial surface display in the biotechnological and industrial fields.

Overexpression of ginseng UGT72AL1 causes organ fusion in the axillary leaf branch of Arabidopsis

  • Nguyen, Ngoc Quy;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.419-427
    • /
    • 2017
  • Background: Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. Methods: Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. Results: PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. Conclusion: PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.

Expression of Schizosaccharomyces pombe Thioltransferase and Thioredoxin Genes under Limited Growth Conditions

  • Cho, Young-Wook;Sa, Jae-Hoon;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.395-401
    • /
    • 2001
  • Schizosaccharomyces pombe gene encoding redox enzymes, such as thioltransferase (TTase) and thioredoxin (TRX), were previously cloned and induced by oxidative stress. In this investigation, their expressions were examined using $\beta$-galactosidase fusion plasmids. The expression of the two cloned genes appeared to be growth-dependent. The synthesis of $\beta$-galactosidase from the TTase-lacZ fusion was increased in the medium with the low glucose level, whereas it was significantly decreased in the medium without glucose or with galactose. It was also decreased in the nitrogen-limited medium. The synthesis of galactosidase from the TRX-lacZ fusion was unaffected by galactose or low glucose. However, it was lowered the absence of glucose. The synthesis of $\beta$-galactosidase from the TTase-lacZ fusion was shown to be enhanced in a higher medium pH. Our findings indicate that S. pombe TTase and TRX genes may be regulated by carbon and nitrogen sources, as well as medium pH.

  • PDF

Some Monascus purpureus Genomes Lack the Monacolin K Biosynthesis Locus

  • Kwon, Hyung-Jin;Balakrishnan, Bijinu;Kim, Yeon-Ki
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.45-47
    • /
    • 2016
  • Two Monascus purpureus genomes lack the monacolin K biosynthesis locus (mok), while Monascus species are generally assumed to be monacolin K producers. These M. purpureus harbor a fusion of mokA and mokB orthologues. This finding suggests that an ancestral mok locus underwent a deletion event in the M. purpureus genome.

Effects of Gene Expression of Photobacterium leiognathi CuZn Superoside Dismutase (PSOD) by lacZ Promotor Control under Oxidative Stress

  • Kim, Young-Gon
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.460-465
    • /
    • 1992
  • The effect of PSOD expression on lacZ-sodP fusion (pYK4) was explored in Escherichia coli sodA sodB mutants (QC774) under oxidative stress. In this system, although .betha.-galactosidase activity was not fully induced by isopropyl-1-thio-.betha.-galactosidase (IPTG) and was inhibited by glucose, functional PSOD was under lacZ promotor control and was induced by IPTC, lactose, PQ and copper isons, finally, the results show that higher PSOD expression leel was consistently importnat in defending against superoxide radicals.

  • PDF

Vaccination of Shrimp (Litopenaeus vannamei) against White Spot Syndrome Virus (WSSV) by Oral Vaccination of Recombinant Fusion Protein, rVP19+28 (사료급이(oral feeding)에 의한 vaccination을 통한 흰반점바이러스(WSSV)에 대한 재조합단백질 rVP19+28의 백신효능의 확인)

  • Nguyen, Thi-Hoai;Kim, Yeong-Jin;Choi, Mi-Ran;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1181-1185
    • /
    • 2010
  • This study was carried out to evaluate the vaccination effects of recombinant fusion protein rVP19+28 against WSSV in shrimp, Litopenaeus vannamei. The VP19+28 gene fused with VP19 and VP28 genes was inserted into pET-28a(+) expression vector and cloned in E. coli BL21 (DE3) to produce fused gene product recombinant VP19+VP28 as a single protein. For the vaccination, the shrimps were fed with pellets coated with purified recombinant protein, rVP19+28, for 2 weeks. Then, constant amounts of WSSV at $1{\times}10^2$ diluted stocks were injected to the muscle of the shrimp for the in vivo challenge tests. Non-vaccinated shrimps showed a cumulative mortality of 100% at 11 days post-challenge. The shrimps vaccinated with the inactivated E. coli BL21 as a host cell control showed cumulative mortality of 100% at 17 days post-challenge. The shrimps vaccinated with rVP19, rVP28 and rVP19+28 showed mortalities of 66.7%, 41.7% and 41.7% at 21 days post-challenge, respectively. These results indicated that the rVP28 and rVP19+28 had relatively high vaccination effects against WSSV infection. However, this study suggests that the fusion protein rVP19+28 was more effective for the protection of shrimp against WSSV than rVP28, even though the cumulative mortalities were the same 21 days post-challenge.

Transformation of Medicago truncatula with rip1-GUS Gene

  • Nam Young-Woo;Song Dae-Hae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.434-439
    • /
    • 2004
  • Medicago truncatula is a model plant for molecular genetic studies of legumes and plant-microbe interactions. To accelerate finding of genes that play roles in the early stages of nodulation and stress responses, a trans-genic plant was developed that contains a promoter­reporter fusion. The promoter of rip], a Rhizobium-induced peroxidase gene, was fused to the coding region of $\beta-glucuronidase (GUS)$ gene and inserted into a modified plant transformation vector, pSLJ525YN, in which the bar gene was preserved from the original plasmid but the neomycin phosphotransferase gene was replaced by a polylinker. Transformation of M. truncatula was carried out by vacuum infiltration of young seedlings with Agrobacterium. Despite low survival rates of infiltrated seedlings, three independent transformants were obtained from repeated experiments. Southern blot analyses revealed that 7 of 8 transgenic plants of the T 1 generation contained the bar gene whereas 6 $T_1$ plants contained the GUS gene. These results indicate that vacuum infiltration is an effective method for transformation of M. truncatula. The progeny seeds of the transgenic plants will be useful for mutagenesis and identification of genes that are placed upstream and may influence the expression of rip] in cellular signaling processes including nodulation.

Analysis of the Caenorhabditis elegans dlk-1 Gene Expression

  • Lee, Bum-Noh;Cho, Nam-Jeong
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.107-111
    • /
    • 2005
  • C. elegans DLK-1 has been reported to play an important role in synaptogenesis by shaping the structure of presynaptic terminal. In this study, we investigated the expression pattern and regulation of the dlk-1 gene in C. elegans. To determine the expression pattern, we made a dlk-1::gfp fusion construct, named pPDdg1, which consisted of -2.2 kb 5' upstream region, the first exon, the first intron, and a part of the second exon of the dlk-1 gene. By microinjecting this construct into the worm, we observed that the DLK-1::GFP was expressed mainly in neurons. We next examined the regulatory elements of gene expression by deletion analysis of pPDdg1. Removal of a large portion of the 5' upstream region (${\Delta}-361$ to -2246) of the gene had little effect on the expression pattern, whereas deletion of the first intron led to elimination of the DLK-1::GFP expression in most of the neurons. Our results suggest that the first intron of the C. elegans dlk-1 gene contains the regulatory element critical for gene expression.

Expression and Purification of Bacteriophage Lambda Integrase by Fusion Protein System (단백질 융합 시스템을 이용한 Bacteriophage Lambda Integrase의 발현 및 정제)

  • 이나영;유승구
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.784-788
    • /
    • 1995
  • The lambda Integrase (Int) carries out site-specific recombination between the two partner DNA sequences, attachment P (attP) and attachment B (attB). In order to study the recombination mechanism, a large quantity of pure integrase is required. Then, we constructed an int gene inserted recombinant plasmid (pNYL3) by using the pQE31 HIS-Tag vector, and produced the fusion protein, 6xHIS-Int from the E. coli TG1 strain carrying the pNYL3 plasmid. The recombinant protein produced was purified by phosphocellulose and Ni$^{++}$-NTA affinity column chromatographies. The result of the in vitro recombination assay using the standard reaction mixture containing 6xHIS-Int and partially purified integration host factor (IHF) showed that the 6xHIS-Int tagged recombination Integrase had the full recombination activity.

  • PDF