• Title/Summary/Keyword: Fusion device

Search Result 294, Processing Time 0.034 seconds

Development of Underwater Positioning System using Asynchronous Sensors Fusion for Underwater Construction Structures (비동기식 센서 융합을 이용한 수중 구조물 부착형 수중 위치 인식 시스템 개발)

  • Oh, Ji-Youn;Shin, Changjoo;Baek, Seungjae;Jang, In Sung;Jeong, Sang Ki;Seo, Jungmin;Lee, Hwajun;Choi, Jae Ho;Won, Sung Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.352-361
    • /
    • 2021
  • An underwater positioning method that can be applied to structures for underwater construction is being developed at the Korea Institute of Ocean Science and Technology. The method uses an extended Kalman filter (EKF) based on an inertial navigation system for precise and continuous position estimation. The observation matrix was configured to be variable in order to apply asynchronous measured sensor data in the correction step of the EKF. A Doppler velocity logger (DVL) can acquire signals only when attached to the bottom of an underwater structure, and it is difficult to install and recover. Therefore, a complex sensor device for underwater structure attachment was developed without a DVL in consideration of an underwater construction environment, installation location, system operation convenience, etc.. Its performance was verified through a water tank test. The results are the measured underwater position using an ultra-short baseline, the estimated position using only a position vector, and the estimated position using position/velocity vectors. The results were compared and evaluated using the circular error probability (CEP). As a result, the CEP of the USBL alone was 0.02 m, the CEP of the position estimation with only the position vector corrected was 3.76 m, and the CEP of the position estimation with the position and velocity vectors corrected was 0.06 m. Through this research, it was confirmed that stable underwater positioning can be carried out using asynchronous sensors without a DVL.

Development of Wearable Physical Activity Monitoring System (웨어러블 신체 생체 활동 모니터링 시스템 개발)

  • Park, Eun-Ju;Park, Do-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.34-39
    • /
    • 2018
  • Along with the development of ICT technology, wearable devices of various sizes and shapes have been developed. In addition, performance and specifications are rebuilt with IOT fusion products so that they can connect with the current smartphone. This is one of the general-purpose technologies of the 4th industrial revolution, which is spot-lighted with technology that changes the quality and environment of our lives. Along with this, as new technology products combining health care technology increases, various functions are provided to users who need it. Wearable technology is ongoing trend of technology development. It also sells products developed as products in the form of smart watches. At present, various related products are made in various ways, and it is recommended to use the Arduino processor in accordance with the application. In this study, we developed wearable physical activity monitoring system using open source hardware based TinyDuino. TinyDuino is an ultra-compact Arduino compatible board made on the basis of Atmega process Board, and it can be programmed in open source integrated development environment(named Sketch). The physical activity monitoring system of the welfare body can be said to be a great advantage, as a smart u-Healthcare system that can perform daily health management.

A Time Synchronization Scheme for Vision/IMU/OBD by GPS (GPS를 활용한 Vision/IMU/OBD 시각동기화 기법)

  • Lim, JoonHoo;Choi, Kwang Ho;Yoo, Won Jae;Kim, La Woo;Lee, Yu Dam;Lee, Hyung Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.251-257
    • /
    • 2017
  • Recently, hybrid positioning system combining GPS, vision sensor, and inertial sensor has drawn many attentions to estimate accurate vehicle positions. Since accurate multi-sensor fusion requires efficient time synchronization, this paper proposes an efficient method to obtain time synchronized measurements of vision sensor, inertial sensor, and OBD device based on GPS time information. In the proposed method, the time and position information is obtained by the GPS receiver, the attitude information is obtained by the inertial sensor, and the speed information is obtained by the OBD device. The obtained time, position, speed, and attitude information is converted to the color information. The color information is inserted to several corner pixels of the corresponding image frame. An experiment was performed with real measurements to evaluate the feasibility of the proposed method.

Comparative analysis of fusion factors affecting the accuracy of injection amount of remote fluid monitoring system (원격 수액모니터링 시스템의 주입량의 정확도에 영향을 주는 융합인자의 비교 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.125-131
    • /
    • 2022
  • Recently, the prevalence of remotely managed patient care systems in medical institutions is increasing due to COVID-19. In particular, in the case of fluid monitoring, hospitals are considering introducing it as a system that can reduce patient safety and nurses' work. There are two products under development: a load cell method that measures weight and a method that detects drops of sap by infrared sensing. Although each product has differences in operation principle, sensor type, size, usage, and price, medical institutions are highly interested in the accuracy of the data obtained.In this study, two prototypes with different sensor methods were manufactured and the total amount of infusion per hour was measured to test the accuracy, which is the core of the infusion monitoring device. In addition, when there was an external movement, the change in the measured value of the sap was tested to evaluate the accuracy according to the measurement method. As a result of the experiment, there was a difference of less than 5% in the measurement value error of the two devices, and the load cell method showed a difference in the low-capacity measurement value and the infrared method in the high-capacity measurement value. As a result of this experiment, there was little difference in accuracy according to the sensor method of the infusion monitoring device, and it is considered that there is no problem in accuracy when used in a medical institution.

A characteristics study on the Second-harmonic generation conversion efficiency of Pulsed Nd:YAG Laser adopted Superposition multiple Mesh Networks (중첩다단 메쉬회로를 적용한 펄스형 Nd:YAG 레이저의 2차 고조파 변환효율에 관한 특성연구)

  • 김휘영
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.565-572
    • /
    • 2001
  • At the most recent years, laser medical instruments, laser applications and laser nuclear fusion need strong visible light and ultraviolet rays. Nonlinear optical devices, such as harmonic generators and parametric oscillators, provide a means of extending the frequency range of available laser sources. Frequency conversion is a useful technique for extending the utility of high-power lasers. It utilizes the nonlinear optical response of an optical medium in intense radiation fields to generate new frequencies. These progresses have been used to generate high-power radiation in all spectral regions, from the ultraviolet to the far infrared. Optical parametric oscillators and amplifiers generate two waves of lower frequency They are capable of generating a range of wavelengths from a single frequency source, in some cases spanning the entire visible and near infrared regions. Consequently, in order to obtain the green light, the pulsed Nd:YAG laser using multiple-mesh PFN(Pulsed Forming Network) method with Nonlinear optical device was adopted. We compared the current pulseshapes with the laser output energy, and conversion efficiency.

  • PDF

Development of Blood Pressure Estimation Methods Using The PPG and ECG Sensors (PPG 및 ECG 센서를 이용한 혈압추정 기법 개발)

  • Park, Hyun-Moon;Lee, Jung-Chul;Hwang, Tae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1257-1264
    • /
    • 2019
  • The traditional cuff-based method for BP(Blood Pressure) measurement is not suitable for continuous real-time BP measurement techniques. For this reason, the previous studies estimated various blood pressures by fusion with the electrocardiography (ECG) and photoplethysmogram (PPG) sensor signals. However, conventional techniques based on PPG bio-sensing measurement face many challenging issues such as noisy supply fluctuation, small pulsation, and drifting non-pulsatile. This paper proposed a novel BP estimation methods using PPG and ECG sensors, which can be derived from the relationship between PPG and ECG using PTT(Pulse Transit Time) and PWV(Pulse Wave Velocity). Unlike conventional height ratio features, which are extracted on the basis of the peaks in the PPG and ECG waveform. The proposed method can be reliably obtained even if there are missing peaks among the sensed PPG signal. The increased reliability comes from periodical estimation of the peak-to-peak interval time using ECG and PPG. After 250,000 times trials of the blood pressure measurement, the proposed estimation technique was verified with the accuracy of ±28.5% error, compared to a commercialized BP device.

Design of S-Shaped Path and Velocity Profile of Moving Stage Using Three Point Locations (3 점을 이용한 이동 무대의 S 곡선 경로 설계)

  • Jung, Kwang-Oh;Oh, Se-Kyu;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.67-76
    • /
    • 2011
  • An exact curved path has to be fixed and velocity profile for travelling on the curved path is required by a moving stage. In this study, we decide the curved path on the basis of the information on three point locations. The path of the moving stage is traced by simulating the designed curve path and the velocity profile, and the results are compared with the given three points to determine how closely the moving stage follows the given path. Further, we propose a method to calibrate a curved path and velocity profile. The proposed moving paths were evaluated by performing experiments. Finally, the designed curved path and the actual path were compared.

Study Curation Service Utilizing th Learner Pattern Information from the Smart Learning (스마트러닝에서의 학습자 패턴 정보를 활용한 큐레이션 서비스 제공 방안 연구)

  • Yun, Jun-soo;Hwang, Hyun-seo;Park, Jin-tae;Seo, Kyoung-teak;Moon, Il-young;Kwon, Oh-young;Kim, Byeong-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.903-906
    • /
    • 2015
  • Over the recent industry -wide virtual world and the real world, broadcasting and telecommunications, IT technology and traditional industries, such as the fusion research has been conducted in a variety of fields. And training in the field of education is changing the paradigm of creativity to break the intrusive training center. In addition, the quality of interactive educational content technology to foster self-directed future talent is a situation that is required. The market has already surpassed the smartphone PC, smart devices and e-learning technologies are appearing new service called 'smart learning' as a new form of convergence of the educational system. In this paper, based on the direct development of a content authoring applications and Web sites, and cloud environments to the students collect and analyze patterns. Utilizing this information, we studied the curation service plans that recommend the appropriate content to fit the tastes of the learner.

  • PDF

Evaluations of Hydrogen Embrittlement Behaviours on Dissimilar Welding Part of SDS Bottles (I) (삼중수소 저장용기 이종용접부의 수소취화 거동 평가 (I))

  • Cho, Kyoungwon;Choi, Jaeha;Jang, Minhyuk;Lee, Youngsang;Hong, Taewhan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.114-119
    • /
    • 2015
  • Nowdays, fossil fuels have been used as an important resource in development of industry. But it is limited and caused climate change such as pollution and global warming. So nuclear fusion research is being issued with tritium to develop eco-friendly and sustainable energy. Republic of Korea is in charge of Storage and Delivery System (SDS) in the International Thermonuclear Experimental Reactor (ITER), weld present in the SDS bottles are easily exposed to the hydrogen embrittlement of special characteristics of the hydrogen in hydrogen atmosphere, When the hydrogen embrittlement is rapidly progresses, the cracking is generated in the weld zone. Due to this cracking, the risk of leakage of tritium into the atmosphere occurs. In this study, hydrogen heat treatment was processed through the Pressure-Composition-Temperature (PCT) device according to the time variation. Also mechanical properties such as rupture strength test, three point bend test and hardness test in accordance with the respective time have been conducted and the fracture was observed by scanning electron microscopy(SEM) after the mechanical properties evaluation.

Thermal Image Real-time estimation and Fire Alarm by using a CCD Camera (CCD 카메라를 이용한 열화상 실시간 추정과 화재경보)

  • Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.92-98
    • /
    • 2016
  • This study evaluated thermal image real-time estimation and fire alarm using by a CCD camera, which has been a seamless feature-point analysis method, according to the angle and position and image fusion by a vector coordinate point set-up of equal shape. The system has higher accuracy, fixing data value of temperature sensing and fire image of 0~255, and sensor output-value of 0~5,000. The operation time of a flame specimen within 500 m, 1000 m, and 1500 m from the test report specimen took 7 s, 26 s, and 62 s, respectively, and image creation was proven. A diagnosis of fire accident was designated to 3 steps: Caution/Alarm/Fire. Therefore, a series of process and the transmission of SNS were identified. A light bulb and fluorescent bulb were also tested for a false alarm test, but no false alarm occurred. The possibility that an unwanted alarm will be reduced was verified through a forecast of the fire progress or real-time estimation of a thermal image by the change in the image of a time-based flame and an analysis of the diffusion velocity.