• Title/Summary/Keyword: Fusion Temperature

Search Result 650, Processing Time 0.023 seconds

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality

  • Park, Hyun Jae;Shin, Jin-ha;Lee, Kang-il;Choi, Yong Sup;Song, Young Il;Suh, Su Jeong;Jung, Yong Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.179-183
    • /
    • 2017
  • The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.

EMC/LVD Compatibility Evaluation of ITER AC/DC Converter Subrack by EN 61000 and IEC 61010 (ITER AC/DC Converter 서브랙의 EN 61000 및 IEC 61010에 의한 EMC/LVD 시험평가)

  • Shin, Hyun-Kook;Oh, Jong-Seok;Song, In-Ho;Suh, Jae-Hak;Choi, Jung-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.222-226
    • /
    • 2021
  • To comply with CE marking requirements, the electromagnetic compatibility (EMC) and low-voltage directive (LVD) tests are conducted on the sub-racks of International Thermonuclear Experimental Reactor (ITER) AC/DC converters and bypass switches. The EMC tests consist of a series of tests, including the electromagnetic interference test, the electromagnetic field immunity test, and the rapid transient burst immunity test. In the LVD test, the electric shock protection test, the xcessive temperature limit and heat resistance of equipment tests, and the fire spread prevention test are performed. This work presents and reviews the European Directive for EMC/LVD and introduces the methods of EMC and LVD tests for the sub-racks of AC/DC converters and bypass switches. It also evaluates the test method and results to meet the European Directive requirements for CE marking. The sub-racks of ITER AC/DC converters and bypass switches successfully pass the EMC and LVD tests.

Study of Cresol-Novolac Epoxy Systems on Fusion Bonded Epoxy Coatings for Pipeline Protection

  • Chung, Chi Wook;Lee, Sang Sun;Chai, Soo Gyum;Lim, Jong Chan
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.202-206
    • /
    • 2003
  • Fusion Bonded Epoxy(FBE) systems have been widely used to protect pipelines for over 30 years. Numerous attempts have so far been made to improve the properties of FBE coatings such as chemical resistance, adhesion, water resistance, cathodic disbondment resistance, impact resistance, and flexibility to protect pipelines at a wet and a high temperature condition. But these attempts have not been successful in reducing some weakness, for instance, in pipeline operating at high temperature due to poor hot water resistance and cathodic protection. The purpose here is to build a basis for getting better corrosion resistance of FBE systems. Cresol-novolac epoxy coating systems were studied compared to bisphenol A type epoxy systems. After the immersion of the film in water at a high temperature for a long period, good adhesion to metal substrate and excellent cathodic disbond resistance were observed in the cresol-novolac epoxy resin systems. It is well known that the adhesion of organic coatings to metal substrate might be decreased due to the disruption of a chemical bond across the film and metal interface induced by water molecules. A high crosslinking density might decrease water permeability and improve cathodic disbonding protection in the coatings. Other factors are studied to understand anti-corrosion mechanism of Cresol-novolac epoxy coatings. In addition, the water absorption rate and the effect of cure temperature on the adhesion and cathodic disbonding resistance ofthe films were studied in different epoxy coatings and the effect of substrate was evaluated. The results of field application are proved that the Cresol-novolac epoxy coating system developed recently is one of the most suitable coatings for protection of pipelines.

Studies on Improved Amylases Developed by Protoplast Fusion of Aspergillus species

  • Adeleye, Tolulope Modupe;Kareem, Sharafadeen Olateju;Olufunmilayo, Bankole Mobolaji;Atanda, Olusegun;Osho, Michael Bamitale;Dairo, Olawale
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • Improved amylases were developed from protoplast fusants of two amylase-producing Aspergillus species. Twenty regenerated fusants were screened for amylase production using Remazol Brilliant Blue agar. Crude enzyme extracts produced by solid state fermentation of rice bran were assayed for activity. Three variable factors (temperature, pH and enzyme type) were optimized to increase the amylase activity of the parents and selected fusants using rice bran medium and solid state fermentation. Analysis of this optimization was completed using the Central Composite Design (CCD) of the Response Surface Methodology (RSM). Amylase activity assays conducted at room temperature and 80℃ demonstrated that Aspergillus designates, T5 (920.21 U/ml, 966.67 U/ml), T13 (430 U/ml, 1011.11 U/ml) and T14 (500.63 U/ml, 1012.00 U/ml) all exhibited improved function making them the preferred fusants. Amylases produced from these fusants were observed to be active over the entire pH range evaluated in this study. Fusants T5 and T14 demonstrated optimal activity under acidic and alkaline conditions, respectively. Fusants T13 and T14 produced the most amylase at 72 h while parents TA, TC and fusant T5 produced the most amylase after 96 h of incubation. Response surface methodology examinations revealed that the enzyme from fusant T5 was the optimal enzyme demonstrating the highest activity (1055.17 U/ml) at pH 4 and a temperature of 40℃. This enzyme lost activity with further increases in temperature. Starch hydrolysis using fusant T5 gave the highest yield of glucose (1.6158 g/100 ml). The significant activities of the selected fusants at 28 ± 2℃ and 80℃ and the higher sugar yields from cassava starch hydrolysis over their parental strains indicate that it is possible to improve amylase activity using the protoplast fusion technique.

Preparation and Characterization of Zaltoprofen-Loaded Polyoxalate Microspheres for Control Release (방출제어를 위한 잘토프로펜이 함유된 폴리옥살레이트 미립구의 제조와 특성)

  • Kim, Kyoung Hee;Lee, Cheon Jung;Jo, Sun A;Lee, Jung Hwan;Jang, Ji Eun;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.702-710
    • /
    • 2013
  • Zaltoprofen loaded polyoxalate (POX) microspheres were prepared by an emulsion solvent-evaporation/extraction method like oil-in-water (O/W) for sustained release of zaltoprofen. The influence of several preparation parameters such as fabrication temperature, stirring speed, intensity of the sonication, initial drug ratio, molecular weight ($M_w$) of POX, concentration of POX and concentration of emulsifier has been investigated on the zaltoprofen release profiles. Physicochemical properties and morphology of zaltoprofen loaded POX microspheres were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR). Through the analyzed results, it was demonstrated that the characteristics of the microspheres greatly affected by the prepared condition. The releases behavior of zaltoprofen was investigated for 10 days in vitro. It was confirmed that the release behavior of zaltoprofen can be controlled by the manufacturing factor of solvent-evaporation/extraction method.

INVESTIGATION ON THE CORROSION BEHAVIOR OF HAHA-4 CLADDING BY OXIDE CHARACTERIZATION

  • Park, Jeong-Yong;Choi, Byung-Kwon;Jeong, Yong-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.149-154
    • /
    • 2009
  • The microstructure, the corrosion behavior and the oxide properties were examined for Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr (HANA-4) alloys which were subjected to two different final annealing temperatures: $470^{\circ}C$ and $570^{\circ}C$. HANA-4 was shown to have $\ss$-enriched phase with a bcc crystal structure and Zr(Nb,Fe,Cr)$_2$ with a hcp crystal structure with $\ss$-enriched phase being more frequently observed compared with Zr(Nb,Fe,Cr)$_2$. The corrosion rate of HANA-4 was increased with an increase of the final annealing temperature in the PWR-simulating loop, $360^{\circ}C$ pure water and $400^{\circ}C$ steam conditions, which was correlated well with a reduction in the size of the columnar grains in the oxide/metal interface region. The oxide growth rate of HANA-4 was considerably affected by the alloy microstructure determined by the final annealing temperature.

Comparisons and analysis on the prototype EU-DEMO TF CICC with Nb3Sn cable

  • Kwon, Soun Pil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.31-39
    • /
    • 2017
  • European R&D on designing their version of a DEMO fusion tokamak has recently resulted in the testing of a prototype $Nb_3Sn$ Cable-in-Conduit Conductor (CICC) for the DEMO TF coil. The characteristics and reported results of low temperature performance tests with the prototype CICC sample are compared with those from CICC samples incorporating other recent $Nb_3Sn$ cable designs. The EU-DEMO TF CICC prototype shows performance characteristics similar to that of the ITER CS CICC with short twist pitch. This is a first for a CICC sample that does not have a circular cross section. Assessment of its internal magnetostatic self-field suggests that a reduction in the internal self-field due to the rectangular geometry of the EU-DEMO TF CICC prototype compared to one with a circular geometry may have contributed to the performance characteristics showing current sharing temperature ($T_{cs}$) initially increase then stabilize with repeated electromagnetic loading, similarly to ITER CS CICC results. However, constraints on the internal self-field are not a sufficient condition for this $T_{cs}$ characteristic to occur.

Cryogenic fracture behaviors and polarization characteristics according to sensitizing heat treatment on structural material of the nuclear fusion reactor (핵 융합로 구조재료의 예민화 열처리에 따른 극저온 파괴거동 및 분극특성)

  • Kwon, Il-Hyun;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.311-320
    • /
    • 1998
  • The cryogenic fracture behaviors of austenitic stainless steel HN2 developed for nuclear fusion reactor were evaluated quantitatively by using the small punch(SP) test. The electrochemical polarization test was applied to study thermal aging degradation of HN2 steel. The X-ray diffraction(XRD) analysis was conducted to detect carbides and nitrides precipitated on the grain boundary of the heat treated HN2 steel. The mechanical properties of the HN2 steel significantly decreased with increasing time and temperature of heat treatment or with decreasing testing temperature. The integrated charge(Q) obtained from electrochemical polarization test showed a good correlation with the SP energy(ESP) obtained by means of SP tests. From the results observed in the x-ray diffraction and anodic polarization curve, it was known that the material the grain boundary. Combining SP test and electrochemical polarization test, it could be useful tools to non-destructively evaluate the cryogenic fracture behaviors and the aging degradation for cryogenic structural material.

Nucleus-phonon interactions of MCsSO4 (M = Na, K, or Rb) single crystals studied using spin-lattice relaxation time

  • Choi, Jae Hun;Kim, Nam Hee;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 2014
  • The structural properties and relaxation processes of $MCsSO_4$ (M = Na, K, or Rb) crystals were investigated by measuring the NMR spectra and spin-lattice relaxation rates $1/T_1$ of their $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei. According to the NMR spectra, the $MCsSO_4$ crystals contain two crystallographically inequivalent sites each for the M and Cs ions. Further, the relaxation rates of all these nuclei do not change significantly over the investigated temperature range, indicating that no phase transitions occur in these crystals in this range. The variations in the $1/T_1$ values of the $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei in these three crystals with increasing temperature are approximately proportional to $T^2$, indicating that Raman processes may be responsible for the relaxation. Therefore, for nuclear quadrupole relaxation of the $^{23}Na$, $^{39}K$, $^{87}Rb$, and $^{133}Cs$ nuclei, Raman processes with n = 2 are more effective than direct processes.

Effect of LiOT on the Tritium Inventory of $Li_{2}O$ Fusion Blanket Breeder Material

  • Cho S.;Abdou M.A.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.515-522
    • /
    • 2003
  • Tritium behavior in the solid breeder blanket is one of the key factors in determining tritium self-sufficiency, as well as safety, of fusion reactors. Recently, a model has been developed to describe the tritium behavior in solid breeder material, which can predict the tritium release and inventory in the blanket. However, the model has limitation to account for tritium solubility effects, mainly existing as LiOT, especially inside the $Li_{2}O$ solid breeder. In order to improve the capability of predicting the LiOT precipitation in $Li_{2}O$ solid breeder, a new logic is developed and integrated in the existing tritium release and inventory calculation code. With the logic developed in this work, the code can have capabilities to analyze tritium release and inventories in $Li_{2}O$ under steady and transient conditions. It can be found that tritium inventory as LiOT is an important mechanism under pulsed operation, and the amount of inventory becomes higher as the tritium generation rate increases and the temperature decreases. Also, the temperature limits for the generation of LiOT precipitation are determined. Therefore the developed logic helps understand the tritium transport mechanism in $Li_{2}O$ solid breeder.