• Title/Summary/Keyword: Fusion Classification Class Label

Search Result 3, Processing Time 0.016 seconds

Classification of Fused SAR/EO Images Using Transformation of Fusion Classification Class Label

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.671-682
    • /
    • 2012
  • Strong backscattering features from high-resolution Synthetic Aperture Rader (SAR) image provide useful information to analyze earth surface characteristics such as man-made objects in urban areas. The SAR image has, however, some limitations on description of detail information in urban areas compared to optical images. In this paper, we propose a new classification method using a fused SAR and Electro-Optical (EO) image, which provides more informative classification result than that of a single-sensor SAR image classification. The experimental results showed that the proposed method achieved successful results in combination of the SAR image classification and EO image characteristics.

A New Object Region Detection and Classification Method using Multiple Sensors on the Driving Environment (다중 센서를 사용한 주행 환경에서의 객체 검출 및 분류 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1271-1281
    • /
    • 2017
  • It is essential to collect and analyze target information around the vehicle for autonomous driving of the vehicle. Based on the analysis, environmental information such as location and direction should be analyzed in real time to control the vehicle. In particular, obstruction or cutting of objects in the image must be handled to provide accurate information about the vehicle environment and to facilitate safe operation. In this paper, we propose a method to simultaneously generate 2D and 3D bounding box proposals using LiDAR Edge generated by filtering LiDAR sensor information. We classify the classes of each proposal by connecting them with Region-based Fully-Covolutional Networks (R-FCN), which is an object classifier based on Deep Learning, which uses two-dimensional images as inputs. Each 3D box is rearranged by using the class label and the subcategory information of each class to finally complete the 3D bounding box corresponding to the object. Because 3D bounding boxes are created in 3D space, object information such as space coordinates and object size can be obtained at once, and 2D bounding boxes associated with 3D boxes do not have problems such as occlusion.

A Detection Model using Labeling based on Inference and Unsupervised Learning Method (추론 및 비교사학습 기법 기반 레이블링을 적용한 탐지 모델)

  • Hong, Sung-Sam;Kim, Dong-Wook;Kim, Byungik;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.18 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • The Detection Model is the model to find the result of a certain purpose using artificial intelligent, data mining, intelligent algorithms In Cyber Security, it usually uses to detect intrusion, malwares, cyber incident, and attacks etc. There are an amount of unlabeled data that are collected in a real environment such as security data. Since the most of data are not defined the class labels, it is difficult to know type of data. Therefore, the label determination process is required to detect and analysis with accuracy. In this paper, we proposed a KDFL(K-means and D-S Fusion based Labeling) method using D-S inference and k-means(unsupervised) algorithms to decide label of data records by fusion, and a detection model architecture using a proposed labeling method. A proposed method has shown better performance on detection rate, accuracy, F1-measure index than other methods. In addition, since it has shown the improved results in error rate, we have verified good performance of our proposed method.