• Title/Summary/Keyword: Fusarium oxysporum f.sp. lycopersici

Search Result 43, Processing Time 0.023 seconds

Simple Mass-screening Methods for Resistance of Tomato to Fusarium oxysporum f. sp. lycopersici (토마토 시들음병에 대한 간편 대량 저항성 검정법)

  • Park, Myung Soo;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.110-116
    • /
    • 2013
  • This study was carried out to establish the simple mass-screening methods for resistant tomato to Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL). Root dip inoculation method has been used in many studies on the resistance of tomato to disease. On the other hand, in mass-screening for resistant tomato to Fusarium wilt, the inoculation method is time-consuming and laborious procedure. Disease development of two FOL isolates on two cultivars of tomato according to inoculation method including root dip, tip and scalpel methods were investigated. In compatible interaction, tomato seedlings of each cultivar inoculated by tip method showed the lower and more variable disease severities than by root dip method. Whereas the seedlings by scalpel method represented clear resistant and susceptible responses to Fusarium wilt as root dip method. The resistance degree of each cultivar inoculated with FOL isolates by scalpel method was hardly affected by the tested incubation temperature and inoculum concentration. On the basis of the results, we suggest scalpel inoculation method as an efficient mass-screening method for resistant of tomato cultivars to Fusarium wilt. Roots of tomato seedlings at two-leaf stage grown in plastic cell tray were injured with scalpel and then spore suspension (more than $1{\times}10^7\;conidia{\cdot}mL^{-1}$) of FOL was poured directly on the roots. The infected plants were cultivated in a growth room at $25-30^{\circ}C$ for 4 weeks with 12-hours light a day.

Screening for Resistance to Fusarium oxysporum f. sp. lycopersici Race 3 Using Molecular Marker in Tomato Germplasm (분자마커를 이용한 토마토 시들음병 race 3 저항성 토마토 유전자원 탐색)

  • Hur, On Sook;Ro, Na Young;Ko, Ho Cheol;Kim, Sang Gyu;Rhee, Ju Hee;Gwag, Jae Gyun;Oh, Se Jong
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.304-309
    • /
    • 2012
  • Fusarium wilt, caused by three races of Fusarium oxysporum f. sp. lycopersici, is one of the most important disease of tomato (Solanum lycopersicum) worldwide. A total of 1,906 tomato accessions were screened for the resistance to Fusarium wilt using I-3 SNP marker and high resolution melting analysis. Results showed that 97 accessions were homozygous resistant, 8 accessions were heterozygous resistant and 1,801 were homozygous susceptible. Accessions containing resistance were identified in 65 accessions of S. lycopersicum var. lycopersicum, 13 accessions of S. lycopericum var. cerasiform, 8 accessions of S. pimpinellifolium, 3 accessions of S. habrochaites, 3 accessions of S. corneliomulleri, 1 accession of S. galapagense, 3 accessions of S. peruvianum, 1 accession of S. chilense. For accurate evaluation of the Fusarium wilt resistance, however, screening to race 1 and race 2 and bio-assay still remain to be evaluated.

Antifungal activity of Streptomyces costaricanus HR391 against some plant-pathogenic fungi (여러 식물병원성 진균을 억제하는 Streptomyces costaricanus HR391의 항진균능)

  • Kim, Hae-Ryoung;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.437-443
    • /
    • 2016
  • In this study Streptomyces strains were isolated from soils and their antifungal activities and involved mechanisms were investigated. Among over 400 isolates of actinomycetes, Streptomyces costaricanus HR391 was selected as a potential antagonist to control several plant-pathogenic fungi. S. costaricanus HR391 inhibited mycelial growth of Fusarium oxysporum f. sp. raphani, F. oxysporum f. sp. niveum, F. oxysporum f. sp. lycopersici, and Rhizoctonia solani by 26.5, 26.2, 21.2, and 23.8%, respectively compared to those of uninoculated control after 7-day incubation on PDB medium. S. costaricanus HR391 produced $89{\mu}M$ of siderphore, and showed fungal cell wall-degrading activity including $0.46{\mu}mol/min/mg$ of chitinase and $0.83{\mu}mol/min/mg$ of ${\beta}$-1,3 glucanase. S. costaricanus HR391 secreted 87.49 mg/L of rhamnolipid, and produced 9.49 mg/L and 4.3 mM of lipopeptide, iturin A and surfactin, respectively, all they are membrane-disrupting biosurfactants. It also produced antimicrobial peptide and antibiotics phenazine. In addition to antifungal substances, S. costaricanus HR391 secreted plant growth-promoting phytohormones, zeatin, gibberellins and IAA. These results suggest that S. costaricanus HR391 may be utilized as an environment-friendly biocontrol agent against some important pathogenic fungi.

Screening for In Vitro Antifungal Activity of Soil Bacteria Against Plant Pathogens

  • Chang, Sung-Hwan;Lee, Jung-Yeop;Kim, Ki-Deok;Hwang, Byung-Kook
    • Mycobiology
    • /
    • v.28 no.4
    • /
    • pp.190-192
    • /
    • 2000
  • Antifungal bacteria for biological control of plant diseases or production of novel antibiotics to plant pathogens were isolated in 1997 from various soils of Ansung, Chunan, Koyang, and Paju in Korea. Sixty-four bacterial strains pre-screened from approximately 1,400 strains were tested on V-8 juice agar against eight plant pathogenic fungi using in vitro bioassay technique for inhibition of mycelial growth. Test pathogens were Alternaria mali, Colletotrichum gloeosporioides, C. orbiculare, Fusarium oxysporum f. sp. cucumerinum, F. oxysporum f. sp. lycopersici, Magnaporthe grisea, Phytophthora capsici, and Rhizoctonia solani. A wide range of antifungal activity of bacterial strains was found against the pathogenic fungi, and strain RC-B77 showed the best antifungal activity. Correlation analysis between inhibition of each fungus and mean inhibition of all eight fungi by 64 bacterial strains revealed that C. gloeosporioides would be best appropriate for detecting bacterial strains producing antibiotics with potential as biocontrol agents for plant pathogens.

  • PDF

Synthesis and Fungitoxicity of Some Pyrimidine Derivatives

  • Ouf, Salama A.;Sherif, Sherif M.
    • Archives of Pharmacal Research
    • /
    • v.16 no.1
    • /
    • pp.62-67
    • /
    • 1993
  • A series of 12 pyrimidine derivatives were prepared and tested in vitro against growth, sporulation and nucleic acids of Fusarium oxysporum f. sp. lycopersici and Helminthosporium oryzae. Intorduction of thiazole ring together with two aryl groups to 2-aminopyrimidine induced drastic toxicity for both fungi. Pyrimidine derivatives with aryl groups were less toxic. Nitro groups were found to enhance the toxicity of the pyrimidine derivatives especially when substituted in ortho-position of the aryl groups. Inhibition of nudeic acids synthesis of both fungi was attributed mainly to the presence of thiazole ring.

  • PDF

Screening of an Antagonistic Bacterium for Control of Red-pepper Anthracnose, Colletotrichum gloeosporioides (고추탄저병균 Colletotrichum gloeosporioides의 방제를 위한 길항 미생물의 분리 및 항진균 활성)

  • Park Sung-Min;Jung Hyuck-Jun;Yu Tae-Shick
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.420-426
    • /
    • 2006
  • Bacillus sp. KMU-991 was isolated from Oslo city soils at Norway and shown a strong antifungal activity on red-pepper anthracnose, Colletotrichum gloeosporioides. Bacillus sp. KMU-991 produced a maximum level of antifungal substrate under aerobic incubation at $30^{\circ}C$, 180 rpm for 48 hours in TSB medium(initial pH 7.0) containing 1.0% mannitol and 1.0% ammonium chloride. Precipitate of culture broth by $30{\sim}60%$ ammonium sulfate precipitation exhibited strong antifungal activity against C. gloeosporioides KACC 40804. Butanol extract of cultured broth also shown fungal growth inhibitory activity against Fusarium oxysporum f. sp. radicus-lycopersici KACC 40537, Rhizoctonia solani AG-4 KACC 40142, Botrytis cinerea KACC 40573, Colletotrichum orbiculare KACC 40808, and Phytophthora cambivora KACC 40160 by agar diffusion method.

Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato

  • Rattana Pengproh;Thanwanit Thanyasiriwat;Kusavadee Sangdee;Juthaporn Saengprajak;Praphat Kawicha;Aphidech Sangdee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.430-448
    • /
    • 2023
  • Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo;Ahn, Il-Pyung;Lim, Jae-Wook;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2005
  • The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.

Note Biological Control of Fusarium Wilt in Tomato by Plant Growth-Promoting Yeasts and Rhizobacteria

  • Abo-Elyousr, Kamal A.M.;Mohamed, Hashem M.
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.199-204
    • /
    • 2009
  • Three plant growth-promoting yeasts and two rhizobacteria were tested for controlling tomato wilt caused by Fusarium oxysporum f. sp. lycopersici under green-house and field conditions. Under greenhouse and field conditions, all treatments were significantly reduced disease severity of tomato wilt relative to the infected control. The highest disease reductions in pots (75.0, 67.4%) and field (52.5, 42.4%) were achieved by Azospirillum brasilense and Bacillus subtilis compared to infected control. Under field condition all treatments produced the highest tomato yield compared to the control plants inoculated with the pathogen.