DOI QR코드

DOI QR Code

Note Biological Control of Fusarium Wilt in Tomato by Plant Growth-Promoting Yeasts and Rhizobacteria

  • Published : 2009.06.30

Abstract

Three plant growth-promoting yeasts and two rhizobacteria were tested for controlling tomato wilt caused by Fusarium oxysporum f. sp. lycopersici under green-house and field conditions. Under greenhouse and field conditions, all treatments were significantly reduced disease severity of tomato wilt relative to the infected control. The highest disease reductions in pots (75.0, 67.4%) and field (52.5, 42.4%) were achieved by Azospirillum brasilense and Bacillus subtilis compared to infected control. Under field condition all treatments produced the highest tomato yield compared to the control plants inoculated with the pathogen.

Keywords

References

  1. Alstrom, S. 2001. Characteristics of bacteria from oilseed rape in relation of their biocontrol activity against Verticillium dahliae. J. Phytopathol. 149:57-64 https://doi.org/10.1046/j.1439-0434.2001.00585.x
  2. Eraky, Amal, M. I., Abd El Hak, O. and Fahmy, F. G. 2007. Efficiency of salicylic acid and oxalic acid for controlling Fusarium wilt disease of tomato. Assiut J. Agric. Sci. 38:97-110
  3. Arkhipova, T. N., Veselov, S. U., Melentiev, A. I., Martynenko, E. V. and Kudoyarova, G. R. 2005. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201-209 https://doi.org/10.1007/s11104-004-5047-x
  4. Barnett, J. A., Payne, R. W. and Yarrow, D. 2000. Vests characteristics and Identification. Third edition. Cambridge University press
  5. Bashan, Y. and De-Bashan, L. E. 2003. Reduction of bacterial speck (Pseudomonas syringae pv. tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemothermal seed treatment. Eur. J. Plant Pathol. 108:821-829 https://doi.org/10.1023/A:1021274419518
  6. Bashan, Y. and Levanony, H. 1990. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J. Microbiol. 36:591-608 https://doi.org/10.1139/m90-105
  7. Bashan, Y., Harrison, S. K. and Whitmoyer, R. E. 1990. Enhanced growth of wheat and soybean plants inoculated with Azospirillum brasilense is not necessarily due to general enhancement of mineral uptake. Appl. Environ. Microbiol. 56:769-775
  8. Benhamou, N., Belanger, R. R. and Paulitz, T. 1996. Ultrastructural and cytochemical aspects of the interaction between Pseudomonas .fluorescens and Ri T-DNA transformed pea roots: host response to colonization by Pythium ultimum Trow. Planta 199:105-117 https://doi.org/10.1007/BF00196887
  9. Bremner, J. M. and Mulvany, G S. 1982. Nitrogen total. p. 595- 622. In. A. L. page (ed) 'Agronomy series No.9, part 2, Methods of Soil Analysis' publisher Madison, Wisconsin, U. S. A.
  10. Dobereiner, J., Baldani, V. L. D. and Reis, V. M. 1995. Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Azospirillum Vi and related microorganisms, ed by I. Fendrik, M. del Gallo, J. Vanderleyden and M. de Zamaroczy, pp. 3-14. Springer-Verlag, Berlin
  11. Dobbelaere, S. A., Croonenborghs, A. Thys, Vande Broek, A. and Vanderleyden, J. 1999. Phytostirnulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155-164 https://doi.org/10.1023/A:1004658000815
  12. Dobbelaere, S., Croonenhorghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., Lavandera-GonzaIez, C. and CaballeroMellado, J. 2001. Responses of agronomically important crops to inoculation with Azospirillum. Austr. J. Plant Physiol. 28:871-879 https://doi.org/10.1071/PP01074
  13. EI-Tarabily, K. A. 2004. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J. Appl. Microbiol. 96:69-75 https://doi.org/10.1046/j.1365-2672.2003.02043.x
  14. Elad, Y. and Chet, I. 1987. Possibe role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77: 190-195 https://doi.org/10.1094/Phyto-77-190
  15. Felici, C., Vettori, L., GiraJdi, E., Forino, L. M. C., Toffanin, A., Tagliasacchi, A. M. and Nuti, M. 2008. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: Effects on plant growth and rhizosphere microbial community. Appl. Soil Ecol. 40:260-270 https://doi.org/10.1016/j.apsoil.2008.05.002
  16. Filonow, A. B. 1998. Role of competition for sugars by yeasts in the biocontrol of gray mold of apple. Riocon. Sci. Tech. 8:243-256 https://doi.org/10.1080/09583159830315
  17. Gomez, K. A. and Gomez, A. A. 1984. Statistical procedure for agriculture research. 2nd ed. John Willey, New York, 680 pp
  18. Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X. and Sun, P. H. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol. Control. 29:66-72 https://doi.org/10.1016/S1049-9644(03)00124-5
  19. Gupta, S., Arora, D. K. and Srivastava, A. K. 1995. Growth promotion of tomato plants by rhizobacteria and imposition of energy stress on Rhizoctonia solani. Soil Biol. Biochem. 27:1051-1058 https://doi.org/10.1016/0038-0717(95)00011-3
  20. Hassan, M. H. A. and Abd El-Rehim, G H. 2002. Yeast application as a biofertilizer and biocontrol agent for onion neck rot disease in relation to bulb productivity and quality. Assiut J. Agric. Sci. 33:241-251
  21. Horemans, S., De Koninck, K., Neuray, l., Hermans, R. and Valassak, K. 1986. Production of plant growth substances by Azospirillum sp. and other rhizosphere bacteria. Symbiosis 2:341-346
  22. Thanaa, Ibrahim, F. 1990. Studies on biological control of the late wilt disease of maize. Ph.D. Thiesise, Fac. of Agric. Ain Shams Univ. Cairo. Egypt
  23. Jetiyanon, K., Tuzun, S. and Kloepper, J. W. 1997. Lignification, peroxidase and superoxide dismutases as early plant defense reactions associated with PGPR-mediated induced systemic resistance. In: Ogoshi A, Kobayashi K., Homma Y., Kodama F., Kondo N., Akino S. (eds) Plant growth-promoting rhizobacteria-present status and future prospects. Nakanishi printing, Sapporo, pp 265-268
  24. Kokalis-Burelle, N., Vavrina, C. S., Rossskopf, E. N. and Shelby, R. A. 2002. Field evaluation of plant growth-promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257-266 https://doi.org/10.1023/A:1014464716261
  25. Lemessa, F. and Zeller, W. 2007. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol. Control 42:336-344 https://doi.org/10.1016/j.biocontrol.2007.05.014
  26. Majumdar, V. L., lat, J. R. and Gour, H. N. 1996. Effect of biocontrol agents on the growth of Macrophomina phaseolina, the incitant of blight of moth bean. Ind. J. Mycol. Plant Pathol. 26:202-210
  27. Masih, E. I. and Paul, B. 2002. Secretion of beta-1 ,3-glucanase by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing mold disease of the grapevine. Curr. Microbiol. 44:391-395 https://doi.org/10.1007/s00284-001-0011-y
  28. Masih, E. I., Slezack-Deschaumes, S., Marmaras, I., Ait Barka, E., Vernet, G, Charpentier, C., Adholeya, A. and Paul, B. 2001. Characterization of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea. FEMS Microbio. Lett. 202:227-232 https://doi.org/10.1111/j.1574-6968.2001.tb10808.x
  29. Okon, Y. and Kapulnik, Y. 1986. Development and function of Azospirillum inoculated roots. Plant Soil 90:3-16 https://doi.org/10.1007/BF02277383
  30. Omar, I., O'Neill, T. M. and Rossall, S. 2006. Biological control of fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol. 55:92-99 https://doi.org/10.1111/j.1365-3059.2005.01315.x
  31. Orolaza, N. P, Kawaguchi, I., Tsuge, T. and Doke, N. 1992. Effect of Al-toxin produced by Alternaria alternate tomato pathotype on cultured roots of tomato. Ann. Phytopathol. Soc. Jpn. 58:411-419 https://doi.org/10.3186/jjphytopath.58.411
  32. Payne, C., Bruce, A. and Staines, H. 2000. Yeast and bacteria as biological control agents against fungal discolouration of Pinus sylvestris blocks in laboratory-based tests and the role of antifungal volatiles. Holzforschung 54:563-569 https://doi.org/10.1515/HF.2000.096
  33. Rodriguez-Molina, M., Medina, I., Torres-Vila, L. and Cuartero, J. 2003. Vascular colonization patterns in susceptible and resistant tomato cultivars inoculated with Fusarium oxysporum f.sp. lycopersici races 0 and 1. Plant Pathol. 52:199-203 https://doi.org/10.1046/j.1365-3059.2003.00810.x
  34. Romero, A. M., Correa, O. S., Moccia S. and Rivas, J. G. 2003. Effect of Azospirillum-mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. J. Appl. Microbiol. 95:832-838 https://doi.org/10.1046/j.1365-2672.2003.02053.x
  35. Schmidt, C. S., Agostini, F., Simon, A. M., Whyte, J., Townend, J., Lifert, C., Killham, K. and Mullins, C. 2004. Influence of soil type and pH on the colonization of sugar beet seedlings by antagonistic Pseudomonas and Bacillus strains, and on their control of Pythium damping-off. Eur. J. Plant Pathol. 110:1025-1046 https://doi.org/10.1007/s10658-004-1600-y
  36. Shabaev, N. P., Smolin, Y. U. and Strekozova, V. I. 1991. The effect of Azospirillum brasilense Sp7 and Azotobacter chroococcum on nitrogen balance in soil under cropping with Oat (Avena sativa L.). Biol. Fertil. Soils 10:290-292 https://doi.org/10.1007/BF00337381
  37. Siddiqui, Z. A. 2006. PGPR: prospective biocontrol agents of plant pathogens. In: PGPR: biocontrol and biofertilization, ed. by Z.A. Siddiqui, pp. 111-142. Springer, Dordrecht
  38. Szczech, M. and Shoda, M. 2006. The effect of mode of application of Bacillus subtilis RBI4-C on its efficacy as a biocontrol agent against Rhizoctonia solani. J. Phytopathol. 154:370-377 https://doi.org/10.1111/j.1439-0434.2006.01107.x
  39. Tuomi, T., Ilvesoksa, J., Laakso, S. and Rosenqvist, H. 1993. Interaction of abscisic acid and indoel-3-acetic acid producing fungi with salix leaves. J. Plant Growth Regul. 12: 149-156 https://doi.org/10.1007/BF00189646
  40. Voisard, C., Keel C., Haas, D., Defago, G. 1989. Cyanide production by Pseudomonas Jluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8:351-358
  41. Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:376-407 https://doi.org/10.1146/annurev.py.26.090188.002115
  42. Wisniewski, M. E., Biles, C., Droby, S., McLaughlin, R., Wilson, C. L. and Chalutz, E. 1991. Mode of action ofthe postharvest biocontrol yeast, Pichia guilliermondii. 1. Characterization of attachment to Botrytis cinerea. Physiol. Mol. Plant Pathol. 39:245-258 https://doi.org/10.1016/0885-5765(91)90033-E

Cited by

  1. Effect of Inoculated Azotobacter chroococcum and Soil Yeasts on Growth, N-uptake and Yield of Wheat (Triticum aestivum) under Different Levels of Nitrogen Fertilization vol.11, pp.3, 2016, https://doi.org/10.3923/ijss.2016.102.107
  2. Evaluation of Streptomyces spp. against Fusarium oxysporum f. sp. ciceris for the management of chickpea wilt vol.56, pp.3, 2016, https://doi.org/10.1515/jppr-2016-0038
  3. Antifungal exploitation of fungicides against Fusarium oxysporum f. sp. capsici causing Fusarium wilt of chilli pepper in Pakistan vol.25, pp.7, 2018, https://doi.org/10.1007/s11356-017-1032-9