• Title/Summary/Keyword: Fusarium graminearum

Search Result 114, Processing Time 0.019 seconds

Establishment of Artificial Screening Methods and Evaluation of Barley Germplasms for Resistance to Fusarium Head Blight (보리 붉은곰팡이병 검정법과 저항성 품종 선발)

  • Han Ouk-Kyu;Kim Jung-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.191-196
    • /
    • 2005
  • Fusarium head blight (FHB) is a severe disease problem that affects the quality and yield of barley grain. The evaluation of FHB resistance is difficult because environmental conditions greatly influence FHB infection and development. The objectives of this study were to: 1) establish an efficient screening method for selecting resistant barley to FHB, 2) compare FHB severity between the cut-spike method and pot-plant method for development of mass screening, and 3) estimate FHB resistance for barley germplasms. Barley cultivars and lines were evaluated for reaction to FHB in controlled-greenhouse condition. Spikes were spray-inoculated with a suspension $(5.0\times10^5\;macroconidia\;mL^{-1})$ of Fusarium graminearum SCK-O4 strain, and then kept in a greenhouse at $18-25^{\circ}C$ with $80-100\%$ relative humidity. Inoculation were employed at 3 different heading growth stages (heading date, three days after heading, and five days after heading). The inoculation was performed in 2 consecutive days in order to avoid escapes. The inoculated plants were maintained in the greenhouse at 4 different free moisture periods (1, 3, 5, and 7 days). The percentage of FHB severity was scored from 0 to 9 according to the rate of infected kernels per spike, and three spikes were evaluated per replication with 3 replicates. There were significant differences of FHB severity depending on the different free moisture periods, but not by the inoculation at different heading stages. The optimum evaluation point of FHB severity in the greenhouse condition was on the 7th day under free moisture condition after inoculation at the heading date. Infection level in cut-spike method highly correlated with that in pot-plant method. This suggested that cut-spike method is useful in evaluating of FHB resistance in barley. Six cultivars, such as Jinkwang, Buheung, Atahualpha 92, Chevron-b, Gobernadora-d, and MNBrite-c, were selected as resistant varieties to FHB. Correlation coefficient for the FHB severity evaluated by the pot-plant method between two seasons was 0.794, indicating the stability and accuracy of the screening method.

Studies on practical application of zearalenone ELISA kits (Zearalenone ELISA kits의 응용에 관한 연구)

  • Yoon, Hwa-joong;Kim, Tae-Jong;Lee, Sung-Yun;JeGal, Jun;Yoon, Ji-Byung
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.2
    • /
    • pp.297-303
    • /
    • 1998
  • For the extraction and measurement of zearalenone in the corn, bean, wheat and barley contaminated with Fusarium graminearum, the zearalenone-oxime, zearalenone-oxime BSA and zearalenone monoclonal antibodies were studied to develop and apply the direct competitive enzyme linked immunosorbent assay (ELISA). The extraction range of zearalenone with the monoclonal antibodies produced in this experiment was 10ng to 500ng/g feed and the 50% inhibition value was 50ng/ml. The mean recoveries of zearalenone artificially spiked in the ground corn were 89%. The specificity of F-2 monoclonal antibody for the analogues was favorable for the direct competitive ELISA. The result of the experiment showed the zearalenone in the corn, bean, wheat and barely naturally contaminated with the mold would be suitable for extraction and measurement with the monoclonal antibodies.

  • PDF

Protective Effect of Modified Glucomannans against Changes in Antioxidant Systems of Quail Egg and Embryo due to Aurofusarin Consumption

  • Dvorska, J.E.;Surai, P.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.3
    • /
    • pp.434-440
    • /
    • 2004
  • The aim of this study was to evaluate effects of modified glucomannan ($Mycosorb^{TM}$) on the antioxidant profile of egg yolk and tissues of newly hatched quail after aurofusarin inclusion in the maternal diet. Fifty-four 45 day-old Japanese quail were divided into three groups and were fed a corn-soya diet balanced in all nutrients ad libitum. The diet of the experimental quail was supplemented with aurofusarin at the level of 26.4 mg/kg feed in the form of Fusarium graminearum culture enriched with aurofusarin or with aurofusarin plus $Mycosorb^{TM}$ at 1 g/kg feed. Eggs obtained after 8 weeks of feeding were analysed and incubated in standard conditions of $37.5^{\circ}C$/55% RH. Samples of quail tissues were collected from newly hatched quail. The main carotenoids, retinol, retinyl esters and malondialdehyde were analysed by HPLC-based methods. Inclusion of aurofusarin in the maternal diet was associated with decreased carotenoid and vitamin A concentrations in egg yolk and liver of newly-hatched quail. Furthermore, lipid peroxidation in quail tissues was enhanced. Inclusion of modified glucomannan ($Mycosorb^{TM}$) in the toxin-contaminated diet provided a significant protective effect against changes in antioxidant composition in the egg yolk and liver. It is suggested that a combination of mycotoxin adsorbents and natural antioxidants could be the next step in counteracting mycotoxins in animal feed.

Antagonistic Potentiality of Trichoderma harzianum Towards Seed-Borne Fungal Pathogens of Winter Wheat cv. Protiva In Vitro and In Vivo

  • Hasan, M.M.;Rahman, S.M.E.;Kim, Gwang-Hee;Abdallah, Elgorban;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.585-591
    • /
    • 2012
  • The antagonistic effect of Trichoderma harzianum on a range of seed-borne fungal pathogens of wheat (viz. Fusarium graminearum, Bipolaris sorokiniana, Aspergillus spp., and Penicillium spp.) was assessed. The potential of T. harzianum as a biocontrol agent was tested in vitro and under field conditions. Coculture of the pathogens and Trichoderma under laboratory conditions clearly showed dominance of T. harzianum. Under natural conditions, biocontrol effects were also obtained against the test fungi. One month after sowing, field emergence (plant stand) was increased by 15.93% over that obtained with the control treatment, and seedling infection was reduced significantly. Leaf blight severity was decreased from 22 to 11 at the heading stage, 35 to 31 at the flowering stage, and 86 to 74 at the grain filling stage. At harvest, the number of tillers per plant was increased by 50%, the yield was increased by 31.58%, and the 1,000-seed weight was increased by 21%.

GzRUM1, Encoding an Ortholog of Human Retinoblastoma Binding Protein 2, is Required for Ascospore Development in Gibberella zeae

  • Kim, Hee-Kyoung;Lee, Yin-Won;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • Gibberella zeae (anamorph: Fusarium graminearum), a homothallic (self-ferile) ascomycete with ubiquitous geographic distribution, causes serious diseases in several cereal crops. Ascospores (sexual spores) produced by this fungal pathogen have been suggested as the main source of primary inoculum in disease development. Here, we report the function of a gene designated GzRUM1, which is essential for ascospore formation in G. zeae. The deduced product of GzRUM1 showed significant similarities to the human retinoblastoma (tumor suppressor) binding protein 2 and a transcriptional repressor, Rum1 in the corn smut fungus (Ustilago maydis). The transcript of GzRUM1 was detected during the both vegetative and sexual stages, but was more highly accumulated during the latter stage. In addition, no GzRUM1 transcript was detected in a G. zeae strain lacking a mating-type gene (MAT1-2), a master regulator for sexual development in G. zeae. Targeted deletion of GzRUM1 caused no dramatic changes in several traits except ascospore formation. The ${\Delta}$GzRUM1 strain produced perithecia (sexual fruit bodies) but not asci nor ascospores within them. This specific defect leading to an arrest in ascospore development suggests that GzRUM1, as Rum1 in U. maydis, functions as a transcriptional regulator during sexual reproduction in G. zeae.

Increased lignan biosynthesis in the suspension cultures of Linum album by fungal extracts

  • Bahabadi, Sedigheh Esmaeilzadeh;Sharifi, Mozafar;Safaie, Naser;Murata, Jun;Yamagaki, Tohru;Satake, Honoo
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.367-373
    • /
    • 2011
  • Linum album accumulates anti-tumor podophyllotoxin (PTOX) and its related lignans, which were originally isolated from an endangered species Podophyllum. In the present study, we examined the effects of five fungal extracts on the production of lignans in L. album cell cultures. Fusarium graminearum extract induced the highest increase of PTOX [$143{\mu}g\;g^{-1}$ dry weight (DW) of the L. album cell culture], while Rhizopus stolonifer extract enhanced the accumulation of lariciresinol up to $364{\mu}g\;g^{-1}$ DW, instead of PTOX. Typical elicitors, such as chitin, chitosan, or methyl jasmonate (MeJA), were shown to be less effective in lignan production in L. album cell cultures. These results verified the advantages of fungal extracts to increase lignan production in L. album cell culture, and suggested potential on-demand metabolic engineering of lignan biosynthesis using differential fungal extracts.

Effects of Storage Temperature and Grain Moisture Content on the Contaminaton of Fusarium and Fusariotoxin in Hulled Barley Grains (겉보리의 저장온도와 수분함량이 붉은곰팡이병균과 곰팡이독소 오염에 미치는 영향)

  • Ham, Hyeonheui;Lee, Kyung Ah;Lee, Theresa;Han, Sanghyun;Hong, Sung Kee;Lee, Soohyung;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.321-328
    • /
    • 2017
  • Fusarium graminearum is a mycotoxigenic plant pathogen, which could remain in harvested barley grains and produces mycotoxins at preferable conditions during storage. To elucidate the factors affecting contamination of Fusarium and Fusariotoxin in hulled barley during storage, three hulled barley grain samples were collected from Jeolla province. Moisture content of each sample was adjusted to 14% and 20%, respectively, then stored in two warehouses where temperature was controlled differently: one controlled below $12^{\circ}C$, and the other with no control. While monitoring temperature and relative humidity of warehouses hourly, grain moisture content, Fusarium occurrence, and mycotoxin level was analyzed at 1, 3, 6, and 12 month after storage. The average monthly temperature and relative humidity ranged $3{\sim}29^{\circ}C$, and 58~70% in warehouse without temperature control, whereas $3{\sim}13^{\circ}C$ and 62~74% in warehouse controlled below $12^{\circ}C$. Grain moisture content of the samples decreased in both warehouses except 14% samples which increased in the warehouse with temperature control. Fusarium frequency of the contaminated grains decreased continuously in the warehouse without temperature control. But in the warehouse below $12^{\circ}C$, Fusarium decreasing rate was slower because of high grain moisture content. In most samples, nivalenol was detected more in the warehouse without temperature control after 12 month but there was little difference after 1, 3, and 6 month. Therefore, it will be efficient to store hulled barley in the warehouse controlled below $12^{\circ}C$ to reduce Fusarium contamination when the barley is not dried properly. In addition, when storage period exceeds 12 month, it is recommended to store hulled barley in a warehouse controlled below $12^{\circ}C$ to reduce nivalenol contamination.

A Large Genomic Deletion in Gibberella zeae Causes a Defect in the Production of Two Polyketides but not in Sexual Development or Virulence

  • Lee Sun-Hee;Kim Hee-Kyoung;Hong Sae-Yeon;Lee Yin-Won;Yun Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.215-221
    • /
    • 2006
  • Gibberella zeae (anamorph: Fusarium graminearum) is an important pathogen of cereal crops. This fungus produces a broad range of secondary metabolites, including polyketides such as aurofusarin (a red pigment) and zearalenone (an estrogenic mycotoxin), which are important mycological characteristics of this species. A screen of G. zeae insertional mutants, generated using a restriction enzyme-mediated integration (REMI) procedure, led to the isolation of a mutant (Z43R606) that produced neither aurofusarin nor zearalenone yet showed normal female fertility and virulence on host plants. Outcrossing analysis confirmed that both the albino and zearalenone-deficient mutations are linked to the insertional vector in Z43R606. Molecular characterization of Z43R606 revealed a deletion of at least 220 kb of the genome at the vector insertion site, including the gene clusters required for the biosynthesis of aurofusarin and zearalenone, respectively. A re-creation of the insertional event of Z43R606 in the wild-type strain demonstrated that the 220-kb deletion is responsible for the phenotypic changes in Z43R606 and that a large region of genomic DNA can be efficiently deleted in G. zeae by double homologous recombination. The results showed that 52 putative genes located in the deleted genomic region are not essential for phenotypes other than the production of both aurofusarin and zearalenone. This is the first report of the molecular characterization of a large genomic deletion in G. zeae mediated by the REMI procedure.

Functional Analysis of a Histidine Auxotrophic Mutation in Gibberella zeae

  • Seo, Back-Won;Kim, Hee-Kyoung;Lee, Yin-Won;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.51-56
    • /
    • 2007
  • A plant pathogenic fungus, Gibberella zeae (anamorph: Fusarium graminearum), not only generates economic losses by causing disease on cereal grains, but also leads to severe toxicosis in human and animals through the production of mycotoxins in infected plants. Here, we characterized a histidine auxotrophic mutant of G. zeae, designated Z43R1092, which was generated using a restriction enzyme-mediated integration (REMI) procedure. The mutant exhibited pleiotropic phenotypic changes, including a reduction in mycelial growth and virulence and loss of sexual reproduction. Outcrossing analysis confirmed that the histidine auxotrophy is linked to the insertional vector in Z43R1092. Molecular analysis showed that the histidine requirement of Z43R1092 is caused by a disruption of an open reading frame, designated GzHIS7. The deduced product of GzHIS7 encodes a putative enzyme with an N-terminal glutamine amidotransferase and a C-terminal cyclase domain, similar to the Saccharomyces cerevisiae HIS7 required for histidine biosynthesis. The subsequent gene deletion and complementation analyses confirmed the functions of GzHIS7 in G. zeae. This is the first report of the molecular characterization of histidine auxotrophy in G. zeae, and our results demonstrate that correct histidine biosynthesis is essential for virulence, as well as sexual development, in G. zeae. In addition, our results could provide a G. zeae histidine auxotroph as a recipient strain for genetic transformation using this new selectable marker.

Variation of Antifungal Activities of Chitosans on Plant Pathogens

  • Park, Ro-Dong;Jo, Kyu-Jong;Jo, You-young;Jin, Yu-Lan;Kim, Kil-Yong;Shim, Jae-Han;Kim, yong-Wong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.84-88
    • /
    • 2002
  • The effect of chitosan on the growth of plant pathogenic fungi was investigated. Chitosan solubilized in acetic acid showed much higher and more consistent antifungal activity than that solubilized in HCl. The antifungal activity was not significantly affected within a DA (degree of deacetylation) range of $57.3-99.2\%$ tested. Water-soluble and low molecular weight chitosan ($57.3\%$ DA) against 6 plant pathogens showed that Monosporascus canonballus and Pythium irregulare were the most susceptible to the chitosan, while Fusarium oxysporum and F. graminearum were the most resistant. At a concentration of 2.5 mg/ml, the growth of pathogens was completely inhibited except for F. oxysporum. The $MIC_50$ values varied depending on both the DA of the chitosan and the plant pathogens. A chitosan with $57.3\%$ DA exhibited the lowest $MIC_50$ (ranging <0.1-1.8 mg/ml) and that with $84.7\%$ DA the highest $MIC_50$ (ranging <0.4-4.0 mg/ml) depending on the pathogen.