DOI QR코드

DOI QR Code

GzRUM1, Encoding an Ortholog of Human Retinoblastoma Binding Protein 2, is Required for Ascospore Development in Gibberella zeae

  • Kim, Hee-Kyoung (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Lee, Yin-Won (Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University) ;
  • Yun, Sung-Hwan (Department of Medical Biotechnology, Soonchunhyang University)
  • Received : 2011.02.11
  • Accepted : 2011.02.02
  • Published : 2011.03.01

Abstract

Gibberella zeae (anamorph: Fusarium graminearum), a homothallic (self-ferile) ascomycete with ubiquitous geographic distribution, causes serious diseases in several cereal crops. Ascospores (sexual spores) produced by this fungal pathogen have been suggested as the main source of primary inoculum in disease development. Here, we report the function of a gene designated GzRUM1, which is essential for ascospore formation in G. zeae. The deduced product of GzRUM1 showed significant similarities to the human retinoblastoma (tumor suppressor) binding protein 2 and a transcriptional repressor, Rum1 in the corn smut fungus (Ustilago maydis). The transcript of GzRUM1 was detected during the both vegetative and sexual stages, but was more highly accumulated during the latter stage. In addition, no GzRUM1 transcript was detected in a G. zeae strain lacking a mating-type gene (MAT1-2), a master regulator for sexual development in G. zeae. Targeted deletion of GzRUM1 caused no dramatic changes in several traits except ascospore formation. The ${\Delta}$GzRUM1 strain produced perithecia (sexual fruit bodies) but not asci nor ascospores within them. This specific defect leading to an arrest in ascospore development suggests that GzRUM1, as Rum1 in U. maydis, functions as a transcriptional regulator during sexual reproduction in G. zeae.

Keywords

References

  1. Ahmed, S., Palermo C., Wan, S. and Walworth, N. C. 2004. A novel protein with similarities to Rb binding protein 2 compensates for loss of Chk1 function and affects histone modification in fission yeast. Mol. Cell. Biol. 24: 3660-3669. https://doi.org/10.1128/MCB.24.9.3660-3669.2004
  2. Aasland, R. Gibson, T. J. and Stewart, A. F. 1995. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20:56-59. https://doi.org/10.1016/S0968-0004(00)88957-4
  3. Balciunas, D. and Ronne, H. 2000. Evidence of domain swapping within the jumonji family of transcription factors. Trends Biochem. Sci. 25:274-276. https://doi.org/10.1016/S0968-0004(00)01593-0
  4. Banuett, F. and Herskowitz, I. 1996. Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122:2965-2976.
  5. Debuchy, R. and Turgeon, B. G. 2006. Mating-type structure, evolution, and function in Euascomycetes. In: The Mycota I. Growth, differentiation and sexuality, ed. by U. Kues and R. Fischer, pp. 293-320. Springer-Verlag, Berlin, Germany.
  6. Desjardins, A. E. 2006. Fusarium mycotoxins chemistry, genetics, and biology. APS Press, St. Paul, USA.
  7. Dul, B. E. and Walworth, N. C. 2007. The plant homeodomain fingers of fission yeast Msc1 exhibit E3 ubiquitin ligase activity. J. Biol. Chem. 282:18397-18406. https://doi.org/10.1074/jbc.M700729200
  8. Fattaey, A. R., Helin, K., Dembski, M. S., Dyson, N., Harlow, E., Vuocolo, G. A., Hanobik, M. G., Haskell, K. M., Oliff, A., Defeo-Jones, D. et al. 1993. Characterization of the retinoblastoma binding proteins RBP1 and RBP2. Oncogene 8:3149-3156.
  9. Fraser, J. A., Diezmann, S., Subaran, R. L., Allen, A., Lengeler, K. B., Dietrich, F. S. and Heitman, J. 2004. Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol. 2:2243-2255.
  10. Gregory, S. L., Kortschak, R. D., Kalionis, B. and Saint, R. 1996. Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence-specific DNA-binding proteins. Mol. Cell. Biol. 16:792-799. https://doi.org/10.1128/MCB.16.3.792
  11. Guldener, U., Seong, K. Y., Boddu, J., Cho, S., Trail, F., Xu, J. R., Adam, G., Mewes, H. W., Muehlbauer, G. J. and Kistler, H. C. 2006. Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet. Biol. 43:316-325. https://doi.org/10.1016/j.fgb.2006.01.005
  12. Hallen, H. E., Huebner, M., Shiu, S. H., Güldener, U. and Trail, F. 2007. Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genet. Biol. 44:1146-1156. https://doi.org/10.1016/j.fgb.2007.04.007
  13. Han, Y. K., Lee, T., Han, K. H., Yun, S. H. and Lee, Y. W. 2004. Functional analysis of the homoserine O-acetyltransferase gene and its identification as a selectable marker in Gibberella zeae. Curr. Genet. 46:205-212. https://doi.org/10.1007/s00294-004-0528-2
  14. Kim, H. K., Lee, T. and Yun, S. H. 2008. A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genet. Biol. 45:1188-1196. https://doi.org/10.1016/j.fgb.2008.05.008
  15. Lee, S. H., Lee, S., Choi, D., Lee, Y. W. and Yun, S. H. 2006. Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet. Biol. 43:295-310. https://doi.org/10.1016/j.fgb.2005.12.007
  16. Lee, S. H., Kim, Y. K., Lee, Y. W. and Yun, S.H., 2008. Identification of differentially expressed proteins in a mat1-2-deleted strain of Gibberella zeae, using a comparative proteomics analysis. Curr. Genet. 53:175-184. https://doi.org/10.1007/s00294-008-0176-z
  17. Lengeler, K. B., Fox, D. S., Fraser, J. A., Allen, A., Forrester, K., Dietrich, F. S. and Heitman, J. 2002. Mating-type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot. Cell 1:704-718.
  18. Leslie, J. F. and Summerell, B. A., 2006. The Fusarium lab manual, Blackwell, Ames, Iowa, USA.
  19. Lu, F. J., Sundquist, K., Baeckstrom, D., Poulsom, R., Hanby, A., Meier-Ewert, S., Jones, T., Mitchell, M., Pitha-Rowe, P., Freemont, P. and Taylor-Papadimitriou, J. 1999. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J. Biol. Chem. 274:15633-15645. https://doi.org/10.1074/jbc.274.22.15633
  20. Madsen, B., Tarsounas, M., Burchell, J. M., Hall, D., Poulsom, R. and Taylor-Papadimitriou, J. 2003. PLU-1, a transcriptional repressor and putative testis-cancer antigen, has a specific expression and localisation pattern during meiosis. Chromosoma 112:124-132. https://doi.org/10.1007/s00412-003-0252-6
  21. McMullen, M., Jones, R. and Gallenberg, D. 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 81:1340-1348. https://doi.org/10.1094/PDIS.1997.81.12.1340
  22. Nevin, J. R. 1992. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258:424-429. https://doi.org/10.1126/science.1411535
  23. Namiki, F., Matsunaga, M., Okuda, M., Inoue, I., Nishi, K., Fujita, Y. and Tsuge, T. 2001. Mutation of an arginine biosynthetic gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant-Microbe Interact. 14:580-584. https://doi.org/10.1094/MPMI.2001.14.4.580
  24. O’Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. U.S.A. 97:7905-7910. https://doi.org/10.1073/pnas.130193297
  25. Qi, W., Kwon, C. and Trail, F. 2006. Microarray analysis of transcript accumulation during perithecium development in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Mol. Gen. Genomics 276:87-100. https://doi.org/10.1007/s00438-006-0125-9
  26. Quadbeck-Seeger, C., Wanner, G., Huber, S., Kahmann, R. and Kämper, J. 2000. A protein with similarity to the human retinoblastoma binding protein 2 specifically as a repressor for genes regulated by the b mating type locus is Ustilago maydis. Mol. Microbiol. 38:154-166. https://doi.org/10.1046/j.1365-2958.2000.02128.x
  27. Sambrook, J., and Russell, D. W. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, USA.
  28. Trail, F., Xu, H., Loranger, R. and Gadoury, D. 2002. Physiological and environmental aspects of ascospore discharge in Gibberella zeae. Mycologia 92:130-138.
  29. Yun, S. H., Arie, T., Kaneko, I., Yoder, O. C. and Turgeon, B. G. 2000. Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet. Biol. 31:7-20. https://doi.org/10.1006/fgbi.2000.1226

Cited by

  1. Multiple roles of a putative vacuolar protein sorting associated protein 74, FgVPS74, in the cereal pathogen Fusarium graminearum vol.53, pp.4, 2015, https://doi.org/10.1007/s12275-015-5067-7
  2. Functional Roles of a Putative B' Delta Regulatory Subunit and a Catalytic Subunit of Protein Phosphatase 2A in the Cereal Pathogen Fusarium graminearum vol.28, pp.3, 2012, https://doi.org/10.5423/PPJ.OA.05.2012.0059
  3. Functional analyses of individual mating-type transcripts atMATloci inFusarium graminearumandFusarium asiaticum vol.337, pp.2, 2012, https://doi.org/10.1111/1574-6968.12012
  4. FgKin1 kinase localizes to the septal pore and plays a role in hyphal growth, ascospore germination, pathogenesis, and localization of Tub1 beta-tubulins inFusarium graminearum vol.204, pp.4, 2014, https://doi.org/10.1111/nph.12953
  5. FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum vol.158, pp.Pt_7, 2012, https://doi.org/10.1099/mic.0.059188-0