• 제목/요약/키워드: Fusarium blight

검색결과 112건 처리시간 0.021초

A Simple Method for the Assessment of Fusarium Head Blight Resistance in Korean Wheat Seedlings Inoculated with Fusarium graminearum

  • Shin, Sanghyun;Kim, Kyeong-Hoon;Kang, Chon-Sik;Cho, Kwang-Min;Park, Chul Soo;Okagaki, Ron;Park, Jong-Chul
    • The Plant Pathology Journal
    • /
    • 제30권1호
    • /
    • pp.25-32
    • /
    • 2014
  • Fusarium head blight (FHB; scab) caused mainly by Fusarium graminearum is a devastating disease of wheat and barley around the world. FHB causes yield reductions and contamination of grain with trichothecene mycotoxins such as deoxynivalenol (DON) which are a major health concern for humans and animals. The objective of this research was to develop an easy seed or seedling inoculation assay, and to compare these assays with whole plant resistance of twenty-nine Korean winter wheat cultivars to FHB. The clip-dipping assay consists of cutting off the coleoptiles apex, dipping the coleoptiles apex in conidial suspension, covering in plastic bag for 3 days, and measuring the lengths of lesions 7 days after inoculation. There were significant cultivar differences after inoculation with F. graminearum in seedling relative to the controls. Correlation coefficients between the lesion lengths of clip-dipping inoculation and FHB Type II resistance from adult plants were significant (r=0.45; P<0.05). Results from two other seedling inoculation methods, spraying and pin-point inoculation, were not correlated with adult FHB resistance. Single linear correlation was not significant between seed germination assays (soaking and soak-dry) and FHB resistance (Type I and Type II), respectively. These results showed that clip-dipping inoculation method using F. graminearum may offer a real possibility of simple, rapid, and reliable for the early screening of FHB resistance in wheat.

Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum

  • Jung, Boknam;Park, Sook-Young;Lee, Yin-Won;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • 제29권1호
    • /
    • pp.52-58
    • /
    • 2013
  • Fusarium head blight (FHB) caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed.

Timing of Fusarium Head Blight Infection in Rice by Heading Stage

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Heu, Sunggi;Shim, Hyeong Kwon
    • Mycobiology
    • /
    • 제46권3호
    • /
    • pp.283-286
    • /
    • 2018
  • Fusarium graminearum causes the devastating plant disease Fusarium head blight and produces mycotoxins on small cultivated grains. To investigate the timeframe of F. graminearum infection during rice cultivation, a spore suspension of F. graminearum was applied to the rice cultivars Dongjin 1 and Nampyeongbyeo before and after the heading stage. The disease incidence rate was the highest (50%) directly after heading, when the greatest number of flowers were present, while only 10% of the rice infected 30 days after heading showed symptoms. To understand the mechanism of infection, an F. graminearum strain expressing green fluorescent protein (GFP) was inoculated, and the resulting infections were visually examined. Spores were found in all areas between the glume and inner seed, with the largest amount of GFP detected in the aleurone layer. When the inner part of the rice seed was infected, the pathogen was mainly observed in the embryo. These results suggest that F. graminearum migrates from the anthers to the ovaries and into the seeds during the flowering stage of rice. This study will contribute to uncovering the infection process of this pathogen in rice.

Response of Barley Genotypes to Fusarium Head Blight under Natural Infection and Artificial Inoculation Conditions

  • Khanal, Raja;Choo, Thin Meiw;Xue, Allen G.;Vigier, Bernard;Savard, Marc E.;Blackwell, Barbara;Wang, Junmei;Yang, Jianming;Martin, Richard A.
    • The Plant Pathology Journal
    • /
    • 제37권5호
    • /
    • pp.455-464
    • /
    • 2021
  • Forty-eight spring barley genotypes were evaluated for deoxynivalenol (DON) concentration under natural infection across 5 years at Harrington, Prince Edward Island. These genotypes were also evaluated for Fusarium head blight (FHB) severity and DON concentration under field nurseries with artificial inoculation of Fusarium graminearum by the grain spawn method across 2 years at Ottawa, Ontario, and one year at Hangzhou, China. Additionally, these genotypes were also evaluated for FHB severity under greenhouse conditions with artificial inoculation of F. graminearum by conidial suspension spray method across 3 years at Ottawa, Ontario. The objective of the study was to investigate if reactions of barley genotypes to artificial FHB inoculation correlate with reactions to natural FHB infection. DON concentration under natural infection was positively correlated with DON concentration (r = 0.47, P < 0.01) and FHB incidence (r = 0.56, P < 0.01) in the artificially inoculated nursery with grain spawn method. Therefore, the grain spawn method can be used to effectively screen for low DON. FHB severity, generated from greenhouse spray, however, was not correlated with DON concentration (r = 0.12, P > 0.05) under natural infection and it was not correlated with DON concentration (r = -0.23, P > 0.05) and FHB incidence (r = 0.19, P > 0.05) in the artificially inoculated nursery with grain spawn method. FHB severity, DON concentration, and yield were affected by year, genotype, and the genotype × year interaction. The effectiveness of greenhouse spray inoculation for indirect selection for low DON concentration requires further studies. Nine of the 48 genotypes were found to contain low DON under natural infection. Island barley had low DON and also had high yield.

Efficacy of Diphenyleneiodonium Chloride (DPIC) Against Diverse Plant Pathogens

  • Jung, Boknam;Li, Taiying;Ji, Sungyeon;Lee, Jungkwan
    • Mycobiology
    • /
    • 제47권1호
    • /
    • pp.105-111
    • /
    • 2019
  • Many of the fungicides and antibiotics currently available against plant pathogens are of limited use due to the emergence of resistant strains. In this study, we examined the effects of diphenyleneiodonium chloride (DPIC), an inhibitor of the superoxide producing enzyme NADPH oxidase, against fungal and bacterial plant pathogens. We found that DPIC inhibits fungal spore germination and bacterial cell proliferation. In addition, we demonstrated the potent antibacterial activity of DPIC using rice heads infected with the bacterial pathogen Burkholderia glumae which causes bacterial panicle blight (BPB). We found that treatment with DPIC reduced BPB when applied during the initial flowering stage of the rice heads. These results suggest that DPIC could serve as a new and useful antimicrobial agent in agriculture.

인삼의 환경 및 기주조건과 발병과의 관계 (Diseases of Ginseng: Environmental and host effect on disease outbreak and growth of pathogens.)

  • 오승환
    • Journal of Ginseng Research
    • /
    • 제5권1호
    • /
    • pp.73-84
    • /
    • 1981
  • Effect of environmental factors and host on the growth and outbreak of various ginseng diseases was reviewed Environmental lectors included hydrogen ion concentration, moisture content, temperature, nutrition, and microbiol populations. Age of the ginseng plants in relation to several ginseng disease occurrence was also included in order to formulate the effective control measure for ginseng diseases. Damping-off caused by Rhizoctonia, Pythium, and Phytophthora, greymold by Botrytis, sclerotinia by Scleretinia, and phytophthora blight caused by Phytophthora were usually prevalent during the early growing season of ginseng when temperature is below 20$^{\circ}C$, while anthrac se caused by Colletotrichum, alternaria blight by Alternaria, and bacterial soft rot by Erwinia were so during the latter growing season when temperature is above 25$^{\circ}C$. However, the root rot incited by Fnarium and Cylindrocarpon caused severe damages throughout the growing season. Growth range of the temperature for a pathogen was highly related to the corresponding disease outbreak. Hydrogen ion concentration was highly related to the outbreak of sclerotinia, root rot, and red rot. Most severe outbreak of those diseases where the soil acidity was pH 4.7, pH 6.5- 7.5, and pH6.0-6.5, respectively. Nitrogen content in the soil was also related to outbreak of root rot and red rot. More red rot occurred where NH,-nitrogen is above 30 ppm and more root rot obtained when excessive nitrogen fertilizer applied. Yellow necrosis apparently was related to magnesium especially its ratio with potassium or calcium content in a soil. Fusarium Population showed significant .relations to missing rate of ginseng Plants in a Implanting ginseng field, while that of total bacteria showed similar relations in all ginseng field, However, in six year old ginseng fields, the more the Streptomyces population was, the less the Fusarium obtained. Consequently, less missing rate observed in a field where Streptomyces population was high. Damping-off, root rot, Rhytophthor a blight were mose severe on the nursery and on 2-3 years old ginseng plants, whereas sclerotinia, and grey cod, alteraria blight, anthracnose were severe on 4-6 years old ginseng plants. Root rot caused by Fusarium and Erwinia, however, was also severe regardless of the age of the plants when the roots were injured. Therefore, for the effective control of ginseng root rot most careful control of the disease during the early year should be rendered.

  • PDF

In Vitro Wheat Immature Spike Culture Screening Identified Fusarium Head Blight Resistance in Wheat Spike Cultured Derived Variants and in the Progeny of Their Crosses with an Elite Cultivar

  • Huang, Chen;Gangola, Manu P.;Kutcher, H. Randy;Hucl, Pierre;Ganeshan, Seedhabadee;Chibbar, Ravindra N.
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.558-569
    • /
    • 2020
  • Fusarium head blight (FHB) is a devastating fungal disease of wheat (Triticum aestivum L.). The lack of genetic resources with stable FHB resistance combined with a reliable and rapid screening method to evaluate FHB resistance is a major limitation to the development of FHB resistant wheat germplasm. The present study utilized an immature wheat spike culture method to screen wheat spike culture derived variants (SCDV) for FHB resistance. Mycotoxin concentrations determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) correlated significantly (P < 0.01) with FHB severity and disease progression during in vitro spike culture. Selected SCDV lines assessed for FHB resistance in a Fusarium field disease nursery in Carman, Manitoba, Canada in 2016 showed significant (P < 0.01) correlation of disease severity to the in vitro spike culture screening method. Selected resistant SCDV lines were also crossed with an elite cv. CDC Hughes and the progeny of F2 and BC1F2 were screened by high resolution melt curve (HRM) analyses for the wheat UDP-glucosyl transferase gene (TaUGT-3B) single nucleotide polymorphism to identify resistant (T-allele) and susceptible (G-allele) markers. The progeny from the crosses were also screened for FHB severity using the immature spike culture method and identified resistant progeny grouped according to the HRM genotyping data. The results demonstrate a reliable approach using the immature spike culture to screen for FHB resistance in progeny of crosses in early stage of breeding programs.

Evaluation of Barley and Wheat Germplasm for Resistance to Head Blight and Mycotoxin Production by Fusarium asiaticum and F. graminearum

  • Seul Gi, Baek;Jin Ju, Park;Sosoo, Kim;Mi-Jeong, Lee;Ji-Seon, Paek;Jangnam, Choi;Ja Yeong, Jang;Jeomsoon, Kim;Theresa, Lee
    • The Plant Pathology Journal
    • /
    • 제38권6호
    • /
    • pp.637-645
    • /
    • 2022
  • Fusarium head blight (FHB) is one of the most serious diseases in barley and wheat, as it is usually accompanied by the production of harmful mycotoxins in the grains. To identify FHB-resistant breeding resources, we evaluated 60 elite germplasm accessions of barley (24) and wheat (36) for FHB and mycotoxin accumulation. Assessments were performed in a greenhouse and five heads per accession were inoculated with both Fusarium asiaticum (Fa73, nivalenol producer) and F. graminearum (Fg39, deoxynivalenol producer) strains. While the accessions varied in disease severity and mycotoxin production, four wheat and one barley showed <20% FHB severity repeatedly by both strains. Mycotoxin levels in these accessions ranged up to 3.9 mg/kg. FHB severity was generally higher in barley than in wheat, and Fa73 was more aggressive in both crops than Fg39. Fg39 itself, however, was more aggressive toward wheat and produced more mycotoxin in wheat than in barley. FHB severity by Fa73 and Fg39 were moderately correlated in both crops (r = 0.57/0.60 in barley and 0.42/0.58 in wheat). FHB severity and toxin production were also correlated in both crops, with a stronger correlation for Fa73 (r = 0.42/0.82 in barley, 0.70 in wheat) than for Fg39.

옥수수와 보리에서 Fusarium graminearum의 8-ketotrichothecenes 생성 (Production of 8-ketotrichothecenes by Fusarium graminearum on Corn and Barley)

  • 서영수;서정아;손황배;이인원
    • 한국식물병리학회지
    • /
    • 제14권5호
    • /
    • pp.418-424
    • /
    • 1998
  • The production of 8-ketotrichothecenes, deoxynivalenol (DON), nivalenol (NIV), and their monoacetyl derivatives was studied in rice and corn cultures using 8 isolates of Fusarium graminearum which were obtained from corn and barley samples. Higher concentrations of trichothecenes were produced on rice than corn, and production of the toxins on rice was enhanced by growing the fungi at $25^{\circ}C$. The isolates were used for evaluation of toxin production and pathogenicity after artificial inoculation to 5 corn and 3 barley cultivars. The kinds and the relative amounts of trichothecenes produced in cultures were consistent with those in infected kernels of corn and barley with some exceptions. As for DON chemotypes, the ratios of 15-acetyl-DON to 3-acetyl-DON were varied among the pathogen-cultivar interactions. The corn and barley cultivars showed the significant differences of resistance to the Fusarium isolates in disease severity and seedling blight, and resistance ranking to the different isolates was varied. However, significant correlations were observed between the total concentrations of trichothecenes in infected kernels of corn and barley and pathogenicities of the Fusarium isolates to the hosts.

  • PDF