• Title/Summary/Keyword: Furnace wall

Search Result 168, Processing Time 0.025 seconds

A study on the Combustion Characteristics of Wall Paper (내장벽지의 연소특성에 관한 연구)

  • Oh, Kyu-Hyung;Choi, Yeon-Yi;Lee, Sung-Eun
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.90-97
    • /
    • 2007
  • Combustion characteristics and toxicity of combustion gas of wallpaper samples were analyzed to evaluate the fire risk of wallpaper furnished in living space. In this study ash residue ratio was measured with high temperature electric furnace, and thermal analysis was carried out with TGA. Combustion time and smoke concentration were measured with cone heater and combustion gas analyzer. Smoke density of samples was measured using smoke chamber of ASTM E 662. The experimental results were showed as followings. Pyrolysis of silk wallpaper started at lower temperature compared to the other samples. It means that the silk wallpaper can be ignited at low heat flux and will have more fire risk than the others. Ignition time by radiation heat flux of silk wallpaper is shorter compared to the other samples, so evacuation time must be reduced. In the case of vinyl coated silk wall paper, carbon mono oxide concentration is the highest and the toxicity and damage effect to consciousness was stronger compared to the other samples. Smoke density of silk wall paper and fire retardant mixed coated silk wall paper were very high due to vinyl coating.

Study on Electrical Properties and Temperature Dependence of Energy Band Gap for $ZnIn_2Se_4$ Single Crystal Thin Film Grown by Hot Wall Epitaxy (뜨겨운 곁쌓기법에 의해 성장된 $ZnIn_2Se_4$ 단결정 박막의 전기적 특성과 에너지 갭의 온도 의존성)

  • Park, Hyang-Sook
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.54-59
    • /
    • 2010
  • A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41{\times}10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $Eg(T)=1.8622eV-(5.23{\times}10^{-4}eV/K)T^2/(T+775.5K)$.

Growth and Photoconductive Characteristics of $ZnGa_2Se_4$ Epilayers by the Hot Wall Epitaxy

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.263-266
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $ZnGa_2Se_4$ single crystal thin films were prepared from horizental furnace. The polycrystal structure obtaind from the power x-ray diffraction was defect chalcopyrite. The lattice costants $a_0\;and\;c_0\;were\;a_0=5.51\;A,\;c_0=10.98\;A$. To obtains the single crystal thin films, $ZnGa_2Se_4$ mixed crystal were deposited on throughly etched Si(100) by the Hot Wall Epitaxy (HWE) system. The temperates of the source and the substrate were $590^{\circ}C\;and\;450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. In order to explore the applicability as a photoconductive cell, we measured the sensitivity($\gamma$), the ratio of photocurrent to dark current(pc/dc), maximum allowable rower dissipation(MAPD), spectral response and response time.

  • PDF

Growth and Photoconductive Characteristics of $AgInS_2$ Single Crystal Thin Films by the Hot Wall Epitaxy

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.381-384
    • /
    • 2004
  • The stochiometric nix of evaporating materials for the $AgInS_2$ single crystal thin films were prepared from horizontal furnace. The polycrystal structure obtaind from the power x-ray diffraction was chalcopyrite. The lattice costants $a_0\;and\;c_0$ were $a_0=5.86(5.82)\;A,\;c_0=11.355(11.17)\;A$. To obtains the single crystal thin films, $AgInS_2$ mixed crystal were deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The temperates of the source and the substrate were $590^{\circ}C\;and\;450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. In order to explore the applicability as a photoconductive cell, we measured the sensitivity($\gamma$), the ratio of photocurrent to dark current (pc/dc), maximum allowable power dissipation(MAPD), spectral response and response time.

  • PDF

Photocurrent Study on the Splitting of the Valence Band and Growth of $CdIn_2S_4$/GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의해 성장된 $CdIn_2S_4$ 단결정 박막의 가전자대 갈라짐에 대한 광전류 연구)

  • Baek, Seung-Nam;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.79-80
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-Insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The temperature dependence of the energy band gap of the $CdIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation. $E_g(T)=2.7116 eV-(7.74{\times}10^{-4} eV)T^2/(T+434)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CdIn_2S_4$ have been estimated to be 0.1291 eV and 0.0248 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $AgInS_2$/GaAs epilayer. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and C1-exciton peaks for n = 1.

  • PDF

Growth and Optical Properties for $CdGa_2Se_4$ epilayer by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_2Se_4$ 박막 성장과 광학적 특성)

  • Hong, Myoung-Seok;Hong, Kwamg-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.125-126
    • /
    • 2006
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films. $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3}$. $345cm^2/V{\cdot}s$ at 293 K, respectively. From the photoluminescence measurement on $CdGa_2Se_4$ single crystal thin film, we observed free excition ($E_x$) existing only high quality crystal and neutral bound exiciton ($D^{\circ},X$) having very strong peak intensity. Then. the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule. an activation energy of impurity was 137 meV.

  • PDF

Growth and optic characteristics of AgGaS$_2$/GaAs single crystal thin film by hot wall epitaxy (HWE 방법에 의한 AgGaS$_2$/GaAs 단결정 박막 성장과 광학적 특성)

  • 이상열;홍광준;정준우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.281-287
    • /
    • 2002
  • The stochiometric composition of AgGaS$_2$ polycrystal source materials for the AgGaS$_2$/GaAs epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal AgGaS$_2$ has tetragonal structure of which lattice constant a$\sub$0/ and c$\sub$0/ were 5.756 ${\AA}$ and 10.305 ${\AA}$, respectively. AgGaS$_2$/GaAs epilayer was deposited on throughly etched GaAs(100) substrate from mixed crystal AgGaS$_2$ by the Hot Wall Epitaxy (100) system. The source and substrate temperature were 590$^{\circ}C$ and 440$^{\circ}C$ respectively. The crystallinity of the grown AgGaS$_2$/GaAs epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for AgGaS$_2$/GaAs epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by ${\alpha}$ : 8.695${\times}$10$\^$-4/ eV/K, and ${\beta}$ = 332 K. From the photocurrent spectra by illumination of polarized light of the AgGaS$_2$/GaAs epilayer, we have found that crystal field splitting ΔCr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pain are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

Growth and optical properties for $AgGaS_2$ epilayer by hot wall epitaxy (HWE 방법에 의한 $AgGaS_2$ 박막성장과 광학적특성)

  • Youn, Seuk-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.56-59
    • /
    • 2004
  • The stochiometric composition of $AgGaS_2$ polycrystal source materials for the $AgGaS_2/GaAs$ epilayer was prepared from horizontal furnace. From the extrapolation method of X-ray diffraction patterns it was found that the polycrystal $AgGaS_2$ has tetragonal structure of which lattice constant $a_0$ and $c_0$ were 5.756 ${\AA}$ and 10.305 ${\AA}$, respectively. $AgGaS_2/GaAs$ epilayer was deposited on throughly etched GaAs (100) substrate from mixed crystal $AgGaS_2$ by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $590^{\circ}C$ and $440^{\circ}C$ respectively. The crystallinity of the grown $AgGaS_2/GaAs$ epilayer was investigated by the DCRC (double crystal X-ray diffraction rocking curve). The optical energy gaps were found to be 2.61 eV for $AgGaS_2/GaAs$ epilayer at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation, then the constants in the Varshni equation are given by ${\alpha}=8.695{\times}10^{-4}eV/K$, and $\beta$=332 K. From the photocurrent spectra by illumination of polarized light of the $AgGaS_2/GaAs$ epilayer, we have found that crystal field splitting $\Delta$ Cr was 0.28 eV at 20 K. From the PL spectra at 20 K, the peaks corresponding to free and bound excitons and a broad emission band due to D-A pairs are identified. The binding energy of the free excitons are determined to be 0.2676 eV and 0.2430 eV and the dissociation energy of the bound excitons to be 0.4695 eV.

  • PDF

Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

The effect of thermal annealing and growth of $AgInS_2$/GaAs single crystal thin film by hot wal epitaxy (Hot wall Epitaxy(HWE)법에 의한 $AgInS_2$단결정 박막 성장과 열처리 효과)

  • Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.274-284
    • /
    • 2001
  • A stoichimetric mixture of evaporating materials for $AgInS_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films. $AgInS_2$mixed crystal was deposited on thorughly etched semi-insulating GaAs(100) substrate by the Hot wall Epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of $AgInS_2$ single crystal the films measured from Hall effect by van der Pauw method are $9.35\times 10^{16}/\terxtm{cm}^3$ and $294\terxtm{cm}^2$/V.s at 293 K, respectively. From the optical absorption measurement the temperature dependence of the energy band gap on AgInS$_2$ single crystal thin film was found to be $E_g$(T)= 2.1365eV-($9.89\times 10^{-3}eV/T^2$/(2930+T). After the as-grown $AgInS_2$ single crystal thin films was annealed in $Ag^-S^-$ and In-atmospheres, the origin of point defects of AgInS$_2$ single crystal the films has been investigated by using the photoluminescence(PL) at 10K. The native defects of $V_{Ag},V_s, Ag_{int}$ and $S_{int}$ int/ obtained from PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $AgInS_2$ single crystal thin films to an optical p-type. Also, we confirmed that In in $AgInS_2$ /GaAs did not form the native defects because In is $AgInS_2$ single crystal thin films did exist in the form of stable bonds.

  • PDF