• 제목/요약/키워드: Furnace temperature

검색결과 1,279건 처리시간 0.026초

고전고급제어(Conventional Advanced Control)를 이용한 TV 브라운관 유리 용해로의 온도제어에 관한 연구 (A Study on the Temperature Control of a TV-Glass Melting Furnace Using the Conventional Advanced Control)

  • 문은철;김흥식
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.822-830
    • /
    • 2000
  • A conventional advanced control algorithm is proposed in this paper for improved temperature regulation of a TV-glass melting furnace. The TV-Glass melting furnace is a typical MIMO(Multi-Input Multi Output) system which is subject to various thermal disturbances. Because of its complexity, a detailed mathematical model of the furnace is hard to establish. To design a temperature control control system of the furnace, major input-output variables are selected first, and simple FOPDT(First Order Plus Dead Time) models are established based on the physical meaning and experimental process data. Based on the FOPDT models, a multi-loop control system composed of cascade and single loops are designed for effective control of the MIMO system. Practical implementation on the 150 ton/day furnace using the DCS(Distributed Control System) showed that the proposed control technique performs better than manual control.

  • PDF

A Billet Heat Transfer Modeling during Reheating Furnace Operation

  • Jang, Yu-Jin;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.863-868
    • /
    • 2004
  • Reheating furnace is an essential facility of a rod mill plant where a billet is heated to the required rolling temperature so that it can be milled to produce wire. Sometimes, it is also necessary to control a transient billet temperature pattern according to the material characteristics to prevent a wire from breaking. Though it is very important objective to obtain a correct information of a billet temperature during furnace operation. Consequently, a billet temperature profile must be estimated. In this paper, a billet heat transfer model based on FEM (Finite Element Method) with spatially distributed emission factors is proposed and a measurement is also carried out for two different furnace operation conditions. Finally, the difference between the model outputs and the measurements is minimized by using the new optimization algorithm named uDEAS(Univariate Dynamic Encoding Algorithm for Searches) with multi-step tuning strategy. Hence, the information of billet temperatures can be obtained by using proposed model on various furnace operation conditions.

  • PDF

융착대 예측을 위한 고로공정 모델링 (Blast Furnace Modeling for Predicting Cohesive Zone Shape)

  • 양광혁;최상민;정진경
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.39-45
    • /
    • 2006
  • Analysis of the internal state of the blast furnace is needed to predict and control the operating condition. Especially, it is important to develop modeling of blast furnace for predicting cohesive zone because shape of cohesive zone influences overall operating condition of blast furnace such as gas flow, chemical reactions and temperature. because many previous blast furnace models assumed cohesive zone to be fixed, they can't evaluate change of cohesive zone shape by operation condition such as PCR, blast condition, and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace process. In this model, cohesive zone is changed by solid temperature range, FVM is used for numerical simulation. To find location of cohesive zone whole calculation procedure is iterated Until cohesive zone is converged. Through this approach, shape of cohesive zone, velocity, composition and temperature within the furnace are predicted by model.

  • PDF

Al-Cu-Mg합금의 일방향응고시 로온도에 따른 응고거동변화 (Effects of the Furnace Temperature on the Growth Behavior of Directionally Solidified Al-Cu-Mg Alloy)

  • 문철희
    • 한국주조공학회지
    • /
    • 제17권6호
    • /
    • pp.545-551
    • /
    • 1997
  • 14 cm length Al-15Cu-1Mg alloys have been directionally solidified in 3 mm diameter alumina tubes in a furnace moved with a constant velocity V=12 cm/hr under various furnace temperatures of 660, 710 and $760^{\circ}C$. By analysing the evolution of the temperature profiles along the alloy length during the solidification, the growth characteristics such as the position of the solid/liquid interface, the local growth velocity (R) and the temperature gradient at the solid/liquid interface (G) have been determined. The effects of the furnace temperature on the growth behavior have been investigated by the comparison of R and G values for each temperature. Under the furnace temperature of $760^{\circ}C$, steady state growth region was observed for the latter half of the growth period.

  • PDF

반도체용 저온 열처리로의 Flat Zone 확장 및 온도편차 감소에 관한 연구 (Study on the Flat Zone Expansion and Temperature Deviation Reduction of Low Temperature Furnace for Semiconductor Process)

  • 주강우;심승술;장혁;이유영;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제13권4호
    • /
    • pp.83-90
    • /
    • 2014
  • This paper is about the yield rate of lower temperature furnace for wafer heat-treatment. The flat-zone that the temperature in furnace has uniform distribution specific area is the significant variable to the yield rate. In this study, we researched about the ways how to widen the flat zone in the furnace using CFD. As a result, we confirmed that the characteristic of the flat-zone was changed when SCU(Super Cooling Unit) was used. We considered temperature control with above.

전기로 온도제어를 위한 화면감시 제어기 설계 (A Design of a Screen Monitoring Controller for the Electric Furnace Temperature Control)

  • 오진석
    • 한국안전학회지
    • /
    • 제12권2호
    • /
    • pp.80-86
    • /
    • 1997
  • In this paper, a temperature controller with monitor function is proposed for the electric furnace system. This controller includes holding and ramp control function, and the control program for the temperature process monitor of the electric furnace. For this purpose, the implementation and performance of auto tuning algorithms in a computer-based controller was studied in relation to the control of nonlinear electric furnace system which is characterized with large delay time. The control program for this controller programmed by c-language. To communicate a control and detection signals, between the controller and the electric furnace is implemented by the I/O data card. We apply the temperature controller to the practical electric furnace. As a result, the proposed controller shows the better status characteristic.

  • PDF

전기로 온도공정제어에 관한 연구 (A Study on Temperature Process Control of Electric Furnace)

  • 오진석;김윤식;오세준;최순만;신명철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권3호
    • /
    • pp.311-318
    • /
    • 1997
  • In this paper, a controller with monitoring functions is proposed for controlling temperature of an electric furnace system. The controller includes holding and ramp control functions, and the control program for the temperature process monitor of the electric furnace. For this purpose, the implementation and performance of auto tuning algorithms in a computer¬based controller is studied in relation to control of a nonlinear electric furnace system which is characterized with large time delay. The communicator of a control and detection signals, between the controller and the electric furnace is implemented by an I/O data card. Experiments for the practical electric furnace are performed to illustrate the performance of the proposed controller.

  • PDF

진공 침탄로 내의 전열 해석 (Heat Transfer Analysis in the Vacuum Carburizing Furnace)

  • 이인섭;유홍선;김원배;양제복
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.877-882
    • /
    • 2003
  • The main objective of the present study is to analyze the heat transfer characteristics in the vacuum carburizing furnace. Local temperatures are measured at different locations in the self-fabricated furnace for various operating conditions using K-type thermocouples. In addition, the present study simulates the fluid flows and heat transfer in the vacuum carburizing furnace using a commercial package (Fluent V. 6.0), and compares the predictions of local temperatures with experimental data. The temperature and flow fields are predicted. It is found that the time taken for reaching the steady-state temperature under the vacuum pressure is shorter than that under the normal pressure condition. It means that the carburizing furnace under vacuum pressure condition is capable of saving the required energy more efficiently than the furnace under the normal pressure condition. Furthermore, the temperature variations predicted by the numerical simulations are in good agreement with experimental data.

가열로 내 슬랩의 온도 예측을 위한 2차원 열전달 모델 (2D Heat Transfer Model for the Prediction of Temperature of Slab in a Direct-Fired Reheating Furnace)

  • 이동은;박해두;김만영
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.950-956
    • /
    • 2006
  • A mathematical heat transfer model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been developed by considering the thermal radiation in the furnace and transient conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient. The slab is moved with constant speed through non-firing, charging, preheating, heating, and soaking zones in the furnace. Radiative heat flux which is calculated from the radiative heat exchange within the furnace modeled using the FVM by considering the effect of furnace wall, slab, and combustion gases is applied as the boundary condition of the transient conduction equation of the slab. Heat transfer characteristics and temperature behavior of the slab is investigated by changing such parameters as absorption coefficient and emissivity of the slab. Comparison with the experimental work shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace.

Numerical Modelling of Temperature Distribution and Pressure Drop through the Layered Burden Loading in a Blast Furnace

  • Yang, Kwang-Heok;Choi, Sang-Min;Chung, Jin-Kyung
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.1-6
    • /
    • 2009
  • Analysis of the internal state of the blast furnace is necessary to predict and to control the operating conditions. Especially, it is important to develop models of the blast furnace to predict the cohesive zone because shape of the cohesive zone influences overall operating conditions of blast furnace such as gas flow, chemical reactions and temperature. Because many previous blast furnace models have assumed cohesive zone to be fixed, it was not possible to evaluate the shape change of cohesive zone in relation with operating conditions such as PCR, blast condition, and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace processes. In this model, cohesive zone is determined by the solid temperature. Finite volume method is employed for numerical simulation. To find location of the cohesive zone, entire calculation procedure is iterated until converged. Through this approach, shape of the cohesive zone, velocity and temperature within the furnace are predicted from the model.

  • PDF