• Title/Summary/Keyword: Furnace slag

Search Result 1,504, Processing Time 0.03 seconds

A Study on the Improvement of the Legal System Related to Electro-Optical Oxidation Slag

  • Kim, Hyeok-Jung;Lee, Young-Woo;Park, Se-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.299-303
    • /
    • 2020
  • Currently, electric furnace oxide slag is mostly used for soil or road use due to its nature. Although electric furnace oxidation slag is an industrial byproduct, not a circulating aggregate, the shortcomings of electric furnace oxidation slag are gradually being resolved due to the development of technology, and it is said that electric furnace oxidation slag is enough to be used as aggregates in light of research and technology conditions outside of Korea. However, there are difficulties in expanding construction and application, given that the current standard for electric furnace oxid slag only defines recycling purposes and does not have specific regulations. Therefore, institutional supplementation is needed to utilize oxidation slag as electricity. In this study, the laws and system related to oxidation slag by electricity are reviewed, laws related to recycled aggregate are examined, and measures for improvement are proposed.

Basic Properties of Concrete with Ultrafine-Blaine Air Cooling Slag as Admixture (초미분말 서냉 슬래그를 혼화재로 사용한 콘크리트의 기초적 특성)

  • Heo, Jae-Hyuk;Jeong, Sung-Wook;Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, a test has been carried out to solve the problem with ground granulated blast-furnace slag, low early strength & lack of supply and to find out a way to use as concrete admixture of the ultrafine blaine air cooling slag which is all disposed as the by product of air cooling slag and its test was conducted to the replacement rate of ultrafine blaine air cooling slag & mixing condition of every concrete admixtures by type for the purpose of obtaining later a basic data for practical use of the cement that used ultrafine blaine air cooling slag by conducting comparative analysis. If ultrafine-blaine air cooling slag is used to the concrete following the results, a high efficiency water reducing agent won't be needed much for flow acquisition due to a high increase in flow, and the stripping time of concrete form will be shortened thanks to the acquisition of early strength, And though, it has the problems with long term strength which is similar or a little lower than the 3 types of ground granulated blast-furnace slag, it's still applicable as the substitute materials for 3 types of ground granulated blast-furnace slag at 10, 15% replacement rate of ultrafine-blaine air cooling slag, at which it shows higher activation index than 3 types of ground granulated blast-furnace slag.

Properties of Mortar according to Gradation change of Electric Arc Furnace Oxidizing Slag Fine Aggregate made by Rapidly Cooled Method (급냉 전기로 산화슬래그 잔골재의 입도 변화에 따른 모르타르의 특성)

  • Kim, Jin-Man;Kwak, Eun-Gu;Choi, Sun-Mi;Kim, Ji-Ho;Lee, Won-Young;Oh, Sang-Youn
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.112-118
    • /
    • 2012
  • Steel industry produces many by-products and wastes such as blast furnace slag, electric arc furnace slag, and converter slag. As in the case of rock, the main component of steel slag are CaO and $SiO_2$ ; further, steel slag is as alkaline as portland cement or concrete. Electric arc furnace oxidizing slag is possible to use as an aggregate for concrete ; however, it has been reclaimed because of it's expansibility caused by free CaO. Recently, a innovative rapid cooling method for melting steel slag has been developed in Korea, which reduces free lime content to minimum level and increases the stability of iron oxide. Therefore, this study describes the results of a series of research to utilize globular shape of electric arc furnace oxidizing slag fine aggregates made by rapidly cooled method for the construction industry by cooling rapidly melted slag from the steel industry. First of all, an experiment was carried out to investigate the quality characteristics of rapidly cooled electric arc furnace oxidizing slag fine aggregates in order to determine whether they can be applied to the construction industry. Then, by applying them to concrete of various particle sizes, we explored experimentally the desired condition to apply rapidly cooled electric arc furnace oxidizing slag fine aggregates to concrete.

  • PDF

Preliminary Study on The Development of Phosphorous Removal Process by Converter and Furnace Slags (제강 전로 및 고로 슬래그를 이용한 인제거 기법에 관한 기초연구)

  • Lee, Seung-hwan;Jang, Jeong-hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.137-144
    • /
    • 2004
  • In this study, several series of experiments were conducted to investigate the phosphorus (P) removal process in slag-containing solution using furnace and converter slags. High amount of $OH^-$, $Ca^{2+}$ and alkalinity were discharged from the slags and hydroxyapatites [$Ca_5(PO_4)_3(OH)$] were kept accumulated on the surface of slag. P removal capacity of the slag decreased with the increase of slag dosage. The maximum capacity was found to be 11.25 mg/g at the converter slag. Converter slag adsorbed P more than furnace slag(about four times in average). An experimental study on the effect of pH shows that the percentage removal of P increased upto 30% at the pH range of 56 than that of above pH 8. Langmuir isotherm constants gave a better correlation than Freundlich ones. P removal amount in the presence of $NH^+_4$ was less compared to the one in the absence of $NH^+_4$. Maximum percentage reduction was 23%.

Quick Judgments of Properties of Fine Aggregate to Use the Electric Arc Furnace Oxidizing Slag

  • Lee, Hyung-Min;Lee, Han-Seung;Choi, Jae-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.442-451
    • /
    • 2011
  • Blast furnace slag is recycled as a high value-added material, while steel slag is difficult to recycle or is recycled as a low-grade filler material due to its expansive characteristics. Its property is caused by the high content of free lime and instable steel oxides. Recently, an innovative and rapid cooling method for melting steel slag has been developed in Korea, which reduces free lime content to a minimum level and increases the stability of steel oxides. However, researches on the long-term stability are not sufficient so far. Therefore, this study, focusing on the electric arc furnace oxidizing slag in the steel slag, aims to investigate the properties of the steel slag aggregate, its long-term volume stability and the engineering strength of mortar, and using it as a fine aggregate. This study result indicated that it was possible for it to be used as concrete aggregate because the volume change of the steel slag appeared to be stable.

A Study on the Strength Property of Recycled Fine Aggregate (Wet Type) Mortar with Blast Furnace Slag (고로슬래그를 사용한 습식 순환 잔골재 모르타르의 강도 특성에 관한 연구)

  • Shim, Jong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. The recycled aggregate includes the cement paste hardened as the surface and the type of the aggregate, which contains plenty of calcium hydroxide($Ca(OH)_2$) as well as the unhydrated cement. Accordingly, the objectives of this study are to inspect the manufacturing the recycled fine aggregate mortar used with blast furnace slag, to consider the effects of the recycled aggregate on the strength development of ground granulated blast furnace slag, and then to acquire the technical data to take into consideration the further usages of the recycled aggregate and blast furnace slag. In eluted ions from recycled aggregate, it showed that there were natrium($Na^+$) and kalium($K^+$), expected to be flown out of unhydrated cement, as well as calcium hydroxide($Ca(OH)_2$). Application of this water to mix cement mortar with ground granulated blast furnace slag was observed to expedite hydration as calcium hydroxide($Ca(OH)_2$) and unhydrated cement component were expressed to give stimuli effects on ground granulated blast furnace slag. The results of the experiment show that the recycled aggregate mixed with blast furnace slag has comparatively higher hydration activity in 7 day than the mortar not mixed with one in 3 day mortar does, causing the calcium hydroxide in the recycled fine aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag.

A Study on the Resistance of Chemical Attack of Mortar Using the Electric Arc Furnace Slag as Fine Aggregate (전기로슬래그 잔골재를 사용한 모르터의 약품저항성에 대한 연구)

  • 문한영;유정훈;윤희경;이재준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.303-306
    • /
    • 1997
  • In this paper, we carried out the fundamental experiments on the resistance of chemical attack of mortar using the electric arc furnace slag as fine aggregate. The mortar specimens made from the electric arc furnace slag (EAF slag) as fine aggregate were immersed in artificial seawater and two sorts of chemical solutions, and measured to investigate the change of compressive strength and weight.

  • PDF

Study of Fundamental Properties of Latex-Modified Concrete Using Blast-furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 사용(使用)한 라텍스개질(改質) 콘크리트의 기초물성(基礎物性) 연구(硏究))

  • Hong, Chang-Woo;Jeong, Won-Kyong;Kim, Kyeong-Jin
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.10-17
    • /
    • 2006
  • The purpose of this study was to evaluate the effects of blast-furnace slag on strength development and durability of latex-modified concrete (LMC) and ordinary portland cement concrete as slag contents. Main experimental variables were performed latex contents (0%, 10%, 15%) and slag contents (0%, 30%). The compressive and flexural strengths, chloride-ion rapid permeability and chemical attacks resistance were measured to analyze the characteristic of the developed LMC and BS-LMC(latex-modified concrete added blast-furnace slag) on hardened concrete. The test results showed that compressive and flexural strength of BS-LMC increased as the slag contents increased from 0% to 30% at the long term of curing. It considers blast furnace slag used when latex content was up to 10%. The permeability resistance of BS-LMC(latex 10%, blast 30%) was extremely good at the curing time 90 days. Also. the effects of added blast furnace slag on OPC and LMC were increased on the permeability and chemical attacks resistance.

Improvement of Early Strength of Blast-Furnace Slag Blended Cement at Low Temperature (고로 슬래그 시멘트의 저온 조기 강도 증진)

  • 장복기;임용무;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • The enhanced slag fineness and the batch water of low water-to-cement ratio(W/C) were employed in order to improve the early strength of blast-furnace slag blended cement at low temperature. A grinding aid was used to grind the blast-furnace slag into the fineness of 6,280$\textrm{cm}^2$/g (Blaine), and this fine slag was then homogeneously mixed with the ordinary Portland cement to produce the blast-furnace slag blended cement containing 40% slag by weight composition. On the other hand, the batch water could be reduced from W/C=0.50 (KS L 5105) to W/C=0.33 through a commercial, naphthalene type superplasticizer. Through the method mentioned above, the early strength of the blast-furnace slag blended cement at low temperature could be enhanced even somewhat higher than the Portland cement strength. And the microsturcture of the cement was studied by both the pore structure analysis and the A.C. impedance measurement.

  • PDF

Effect of Gypsum Mixture on Activation of Coal Gasification Slag (석고 혼입이 석탄가스화 슬래그의 활성화에 미치는 영향)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol;Cho, Do-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.17-18
    • /
    • 2019
  • In this study, the initial strength reduction of coal gasification slag fine powders was confirmed through previous studies when used in cement formulations. It is also confirmed that the blast furnace slag is mixed with cementitious coal blast furnace slag, which is similar to coal gasification slag, to incorporate gypsum in order to prevent initial strength deterioration. In order to analyze the reactivity of coal gasification slag by desulfurization gypsum, the formation of hydrates and their reactivity at early ages were confirmed by electron microscope. In order to confirm the reactivity, the gypsum samples were prepared with unincorporated type and 2% mixed type. Experimental results showed that 2% of the desulfurized gypsum specimens reacted more actively than the uninjured ones.

  • PDF