• 제목/요약/키워드: Fungicidal

검색결과 231건 처리시간 0.024초

보리 흰가루병에 대한 몇 가지 계면활성제의 방제 효과 (Controlling effect of several surfactants on barley powdery mildew caused by Erysiphae graminis)

  • 장경수;유주현;최경자;김진철;조광연;김흥태
    • 농약과학회지
    • /
    • 제5권2호
    • /
    • pp.51-57
    • /
    • 2001
  • Tween 20을 비롯한 8 종류의 계면활성제를 선발하여 보리흰가루병(병원균: Erysiphae graminis f.sp. hordei)에 대한 방제효과와 기존약제에 첨가하였을 때 약효에 미치는 영향을 조사하였다. $1,000{\mu}g/mL$ 처리구에서 흰가루병에 대하여 90%의 방제효과를 보인 PNPP가 공시한 다른 계면활성제보다 높은 예방효과를 보였다. 그러나 치료효과의 실험에서는 LN 13.0이 가장 우수한 효과를 나타냈으며, 특히 $500{\mu}g/mL$의 LN 13.0은 병원균을 접종하고 4일 후에 처리하여도 흰가루병의 발병은 4.0%의 미미한 수준에 그쳤다. 물한천배지 상에서 실시한 포자발아 억제실험에서 LN 13.0을 비롯한 공시한 모든 계면활성제는 흰가루병균의 포자 발아를 억제하였다. Triforine, triadimefon, benomyl의 처리용액을 증류수로 조제하였을 때에는 benomyl만이 방제 효과를 나타내었고, 효과가 없었던 triadimefon과 triforine은 LN 13.0과 Tween 20을 첨가하여 살포하면 우수한 효과를 나타내었다. 또한 SP 13.0, NP 13.0, LN 13.0, DBC 등의 계면활성제는 $1,000{\mu}g/mL$의 고농도로 보리에 처리하면 심한 약해가 유발되었으나, Tween 20, SLIS, PAS, PNPP 등은 동일한 농도에서 약해를 보이지 않았다.

  • PDF

Strobilurin계 살균제에 대한 고추탄저병균의 교차저항성과 Pyraclostrobin 저항성균에 대한 다른 기작 살균제의 억제 효과 (Cross-resistance of Colletotrichum acutatum s. lat. to Strobilurin Fungicides and Inhibitory Effect of Fungicides with Other Mechanisms on C. acutatum s. lat. Resistant to Pyraclostrobin)

  • 박수빈;김흥태
    • 식물병연구
    • /
    • 제28권3호
    • /
    • pp.122-131
    • /
    • 2022
  • Pyraclostrobin에 대해서 감수성균인 Colletotrichum acutatum s. lat. 20JDS8과 저항성인 20CDJ6을 사용하여, strobilurin계에 속하는 살균제와의 교차 저항성 여부와, 작용기작이 다른 살균제의 저항성균에 대한 작용 특성을 조사하였다. Pyraclostrobin 저항성 20CDJ6은 strobilurin계인 azoxystrobin, trifloxystrobin, kresoxim-methyl에 대해서도 저항성을 보여, 교차 저항성 관계가 있음을 알 수 있었다. 작용기작이 다른 모든 살균제는 감수성과 저항성균 모두의 균사 생장을 억제하였지만, 열매에서 병 방제 효과는 서로 달랐다. Isopyrazam의 20JDS8과 20CDJ6에 대한 병 방제효과는 매우 낮았으며, fluazinam은 열매에 상처를 내지 않고 예방적으로 처리하였을 때만 20JDS8과 20CDJ6에 대해서 91.9%와 88.1%의 방제 효과를 보였다. Tebuconazole과 prochloraz는 PDA 배지 상에서 20JDS8과 20CDJ6의 균사생장뿐만 아니라 고추 열매에서 병 발생도 효과적으로 억제하였다. 본 연구의 결과, pyraclostrobin에 대해서 저항성인 고추탄저병균은 strobilurin계의 다른 살균제와 교차 저항성을 보였다. 또한 pyraclostrobin 저항성균의 방제를 위한 대체 살균제로 작용기작이 다른 fluazinam, tebuconazole, prochloraz 등을 추천할 수 있을 것으로 생각한다. 다만, fluazinam은 병 발생 이전에 예방적으로 처리하여야만 효과를 얻을 수 있다.

sanN Encoding a Dehydrogenase is Essential for Nikkomycin Biosynthesis in Streptomyces ansochromogenes

  • Ling, Hong-Bo;Wang, Guo-Jun;Li, Jin-E;Tan, Hua-Rong
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.397-403
    • /
    • 2008
  • Nikkomycins are a group of peptidyl nucleoside antibiotics with potent fungicidal, insecticidal, and acaricidal activities. sanN was cloned from the partial genomic library of Streptomyces ansochromogenes 7100. Gene disruption and complementation analysis demonstrated that sanN is essential for nikkomycin biosynthesis in S. ansochromogenes. Primer extension assay indicated that sanN is transcribed from two promoters (sanN-P1 and sanN-P2), and sanN-P2 plays a more important role in nikkomycin biosynthesis. Purified recombinant SanN acts as a dehydrogenase to convert benzoate-CoA to benzaldehyde in a random-order mechanism in vitro, with respective $K_{cat}/K_m$$ values of $3.8mM^{-1}s^{-1}\;and\;12.0mM^{-1}s^{-1}$ toward benzoate-CoA and NADH, suggesting that SanN catalyzes the formation of picolinaldehyde during biosynthesis of nikkomycin X and Z components in the wild-type stain. These data would facilitate us to understand the biosynthetic pathway of nikkomycins and to consider the combinatorial synthesis of novel antibiotic derivatives.

Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi

  • Kim, Sang-Woo;Jung, Jin-Hee;Lamsal, Kabir;Kim, Yun-Seok;Min, Ji-Seon;Lee, Youn-Su
    • Mycobiology
    • /
    • 제40권1호
    • /
    • pp.53-58
    • /
    • 2012
  • This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

Development and Improvement of fungicidal spray program for apple production.

  • Lee, Hyun-Jik;Cho, Rae-Hong;Shin, Jung-Sup;Kim, Jung-Nam;Yoon, Ji-Hyun;Uhm, Jae-Youl
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.109.2-109
    • /
    • 2003
  • A basic spray program for apple in which fungicides are scheduled to spray at 15-day interval from petal fall to late August was formulated on the properties of several selected fungicides. In order to improve it, experimental plots, completely randomized block with 3 replications, were prepared in an orchard of 15 years old Fuji cultivar, and the spray programs in which only one chemical in the basic spray program was substituted with others were applied to each plot. It was revealed that only single substitution of the fungicide in the basic spray program makes a great differences in the control of white rot and bitter rot, and that the control property of the fungicides against the two diseases was quite variable even by the time of application. A simila! ! r trial was conducted in 2002 with a new basic spray program that was formulated with fungicides that have shown best control in each spraying time in the previous trial, similar results were obtained. Applying this method, the usefulness of certain fungicide in the spray program for apple could be properly assessed. Anthracnose of Robinia pseudo-acacia L. caused by Collectotrichum spp.

  • PDF

Candida albicans에 대한 의치 세정제의 항진균능 검사 (DETERMINATION OF ANTIFUNGAL ABILITY OF DENTURE CLEANSING AGENTS TO CANDIDA ALBICANS)

  • 전상섭;정재헌;이장희
    • 대한치과보철학회지
    • /
    • 제31권1호
    • /
    • pp.28-38
    • /
    • 1993
  • For the purpose of evaluating the cleansing efficiency against Candida albicans detected frequently in patients with denture stomatitis, two denture cleansers with or without enzymes were studied under the same conditions. The results were as fellows: 1. Enzyme-contain denture cleanser was showed more Candida albicans lytic ability than non-enzyme-contained denture cleanser. 2. It was observed that Candida albicans lytic activity in further diluted manufacturerers' recommended concentration was decreased. 3. In fungicidal test, the enzyme-contained denture cleanser sterilized Candida albicans, and the non-enzyme-contained denture cleanser did not sterilize Candida albicans. 4. Sterilizing time of Candid albicans was needed for at least 60 minutes in enzyme-contained denture cleanser solution which was diluted with manufacturerers' recommended concentrations., and was needed for more times with further diluted manufacturerers' recommended concentrations. 5. In vitro growth test of Candida albicans on acrylic resin surface, the only enzyme-contained denture cleanser inhibited growth of Candida albicans, and it was observed that inhibiton ability of growth of Candida albicans on arrylic resin surface was decreased in further diluted manufacturerers' recommended concentrations.

  • PDF

Development of a 15-day Interval Spraying Program for Controlling Major Apple Diseases

  • Lee, Dong-Hyuck;Kim, Dae-Hee;Shin, Ho-Cheol;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • 제24권4호
    • /
    • pp.439-446
    • /
    • 2008
  • A fungicidal spray program for effective control of three major apple diseases in Korea (white rot, bitter rot, and Marssonina blotch) was developed. This was based on our previous studies showing that application of ergosterol biosynthesis inhibitors (EBIs) in early or mid-August can eradicate white rot infection in fruit and that some protective fungicides show after-infection activity against white rot. The basic spray program focused on control of white rot, the main target disease, and the fungicides were sprayed at 15-day intervals from petal fall to late August using fungicides that show after-infection and EBI activity. The basic spray program was modified over 4 successive years to improve control efficacy against bitter rot and Marssonina blotch, which sometimes cause as much damage as white rot. Modifications to the regime were made every year by replacing one fungicide in the basic program at a specific spraying time. Substitution of only one fungicide in the spray program, even early in the growing season, greatly influenced the final disease incidence at harvest. Applying this principle, a moderately efficient spray program for cv. Fuji that increased the spray interval from 10 to 15 days and thus reduced the number of sprays required per crop season was developed.

p-Anisaldehyde Exerts Its Antifungal Activity Against Penicillium digitatum and Penicillium italicum by Disrupting the Cell Wall Integrity and Membrane Permeability

  • Che, Jinxin;Chen, Xiumei;Ouyang, Qiuli;Tao, Nengguo
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.878-884
    • /
    • 2020
  • Penicillium digitatum and P. italicum are the two important postharvest pathogens in citrus, causing about 90% of the total loss of citrus fruit during storage and transportation. Natural fungicides such as essential oils have been widely used instead of chemical fungicides for preventing and controlling postharvest diseases. In this research, p-anisaldehyde exhibited a strong inhibitory effect on P. digitatum and P. italicum, with the minimum inhibitory concentration and minimum fungicidal concentration values of both being 2.00 μl/ml. Additionally, p-anisaldehyde visibly inhibited both the green mold and blue mold development of citrus fruits inoculated with P. digitatum and P. italicum. The mycelia morphologies of these pathogens were greatly altered, and the membrane permeability and cell wall integrity of mycelia were severely disrupted under p-anisaldehyde treatment. These results suggest that the antifungal activity of p-anisaldehyde against P. digitatum and P. italicum can be attributed to the disruption of the cell wall integrity.

Evaluation of Two Biologically Active Compounds for Control of Wheat Root Rot and its Causal Pathogens

  • Hashem, Mohamed;Hamada, Afaf M.
    • Mycobiology
    • /
    • 제30권4호
    • /
    • pp.233-239
    • /
    • 2002
  • The main aim of this study is to evaluate the efficiency of two biologically active compounds(Strom and F-760) in control of wheat root rot disease and its causal organisms. Fusarium graminearum, F. oxysporum, F. solani and Bipolaris sorokiniana were used as target organisms. In vitro, the two compounds showed fungicidal effect on all investigated pathogens resulted in suppression of radial growth and mycelial dry weight of them. Under greenhouse conditions, treatment of wheat grains with either Strom or F-760 before cultivation significantly reduced the percent of disease distribution as well as the mean disease rating of plants in both seedling and flowering stages. Fresh and dry weights of plants as well as water maintenance capacity were increased as the result of applying these compounds as seed dressing. Also data showed that the membrane stability of plants was injured as a result of infection with all investigated organisms, while this injury was alleviated when F-760 and Strom were applied. The $K^+$ efflux and the leakage of UV absorbing metabolites was stimulated with fungal infection. However, F-760 and Storm treatment partially retarded the stimulatory effect on leakage of $K^+$ and UV-absorbing metabolites of fungal infected plants. On the other side, the fungal infection had inhibitory effects on pigment fractions(chlorophyll a, b, and carotenoids) biosynthesis in wheat leaves. This retarding effect was partially or completely alleviated as the grains were treated with the applied compounds.

황산구리와 탄산나트륨 처리 목재 내의 물불용성 구리화합물의 생성과 방부효력 (Formation and Preservative Effectiveness of Water-Insoluble Copper Compound in Wood Treated with Copper Sulfate and Sodium Carbonate)

  • 김진경;이종신
    • 한국가구학회지
    • /
    • 제19권5호
    • /
    • pp.358-364
    • /
    • 2008
  • Wood-inorganic material composite (WIC) was prepared by impregnating wood with copper sulfate ($CuSO_4\;5H_2O$) solution and by immersed wood in sodium carbonate($Na_2CO_3$) solution in order to introduce insoluble copper compounds {copper carbonate hydroxide, $CuCO_3\;Cu(OH)_2$} into the wood to give fungicidal effects in treated-wood. The weight percent gains (WPGs) of treated wood reached maximum value by impregnation of 20% copper sulfate solution and immersion in about 15% sodium carbonate solution for 24 hrs. Inorganic substances were present mainly in the lumina and cross-field pitting of tracheides. These substances were proved to be the insoluble copper carbonate hydroxide against water by the energy dispersive X-ray analyzer in conjunction with a scanning electron microscope (SEM-EDXA). The treated specimens showed high preservative effectiveness because the weight losses were hardly occurred by the fungi degradation test.

  • PDF