• 제목/요약/키워드: Fungal transformation

검색결과 43건 처리시간 0.019초

Transformation of a Filamentous Fungus Cryphonectria parasitica Using Agrobacterium tumefaciens

  • Park, Seung-Moon;Kim, Dae-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권3호
    • /
    • pp.217-222
    • /
    • 2004
  • As Agrobacterium tumefaciens, which has long been used to transform plants, is known to transfer T-DNA to budding yeast, Saccharomyces cerevisiae, a variety of fungi were subjected to the A. tumefaciens-mediated transformation to improve their transformation frequency and feasibility. The A. tumefaciens-mediated transformation of chestnut blight fungus, Cryphonectria parasitica, is performed in this study as the first example of transformation of a hardwood fungal pathogen. The transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of the Aspergillus nidulans trpC promoter and terminator, as a selectable marker, led to the selection of more than 1,000 stable, hygromycin B-resistant transformants per 1${\times}$10$\^$6/ conidia of C. parasitica. The putative transformants appeared to be mitotically stable. The transformation efficiency appears to depend on the bacterial strain, age of the bacteria cell culture and ratio of fungal spores to bacterial cells. PCR and Southern blot analysis indicated that the marker gene was inserted at different chromosomal sites. Moreover, three transformants out of ten showed more than two hybridizing bands, suggesting more than two copies of the inserted marker gene are not uncommon.

Agrobacterium tumefaciens-mediated Transformation in Colletotrichum falcatum and C. acutatum

  • Maruthachalam, Karunakaran;Nair, Vijayan;Rho, Hee-Sool;Choi, Jae-Hyuk;Kim, Soon-Ok;Lee, Yong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.234-241
    • /
    • 2008
  • Agrobacterum tumefaciens-mediated transformation (ATMT) is becoming an effective system as an insertional mutagenesis tool in filamentous fungi. We developed and optimized ATMT for two Colletotrichum species, C. falcatum and C. acutatum, which are the causal agents of sugarcane red rot and pepper anthracnose, respectively. A. tumefaciens strain SK1044, carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (GFP) gene, was used to transform the conidia of these two Colletotrichum species. Transformation efficiency was correlated with co-cultivation time and bacterial cell concentration and was higher in C. falcatum than in C. acutatum. Southern blot analysis indicated that about 65% of the transformants had a single copy of the T-DNA in both C. falcatum and C. acutatum and that T-DNA integrated randomly in both fungal genomes. T-DNA insertions were identified in transformants through thermal asymmetrical interlaced PCR (TAIL-PCR) followed by sequencing. Our results suggested that ATMT can be used as a molecular tool to identify and characterize pathogenicity-related genes in these two economically important Colletotrichum species.

Development of Non-protoplast transformation System in Aspergillus oryzae

  • Lee Jae Won;Hahm Young Tae
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2000년도 추계학술발표대회
    • /
    • pp.85-91
    • /
    • 2000
  • Aspergillus oryzae is a filamentous fungus classified in the group Aspergillaceae Ascomycetes. It is an important microorganism for industrial production of enzymes and fermented food productions. It secrets large quantities of proteins or enzymes into the culture medium which makes this organism appealing for the production of heterologous proteins. Recently Electric field-mediated transformation method, electroporation, has been applied to fungal transformation. In this study, fungal transformation was carried out by bypassing the protoplast isolation step, decreasing the culturing time and non-protoplast transformation for the increment of transformation efficiency. Transformants were obtained with electroporation in optimal condition 2,500 voltage, 1,540 ohm and 0.50 capacitance. More than 1,000 transform ants were obtained with 6-10 hrs cultured mycelia without enzyme treatment, called non-protoplast transformation.

  • PDF

Agrobacterium-mediated Transformation of the Winter Mushroom, Flammulina velutipes

  • Cho, Jung-Hee;Lee, Seung-Eun;Chang, Who-Bong;Cha, Jae-Soon
    • Mycobiology
    • /
    • 제34권2호
    • /
    • pp.104-107
    • /
    • 2006
  • Flammulina velutipes was transformed efficiently by Agrobacterium-mediated transformation system. The transformation frequency was about 16% with the gill tissues of the fungal fruiting body. Southern hybridization and genetic analysis suggest that the introduced DNA was inserted onto different locations of the fungal genome, and inherited stably to the next generation via basidiospores. Transformation or gene tagging with Agrobacterium T-DNA based vector should be useful for wide ranges of genetic or molecular biological studies of the mushroom.

Improved Transformation of the Filamentous Fungus Aspergillus niger Using Agrobacterium tumefaciens

  • Park, Seung-Moon
    • Mycobiology
    • /
    • 제29권3호
    • /
    • pp.132-134
    • /
    • 2001
  • Since it is known that Agrobacterium tumefaciens, which has long been used to transform plants, can transfer the T-DNA to yeast Saccharomyces cerevisiae during tumourigenesis, a variety of fungi were subjected to transformation to improve their transformation frequency. In this study, I report the A. tumefaciens-mediated transformation of filamentous fungus Aspergillus niger. Transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of the Aspergillus nidulans trpC promoter and terminator as a selectable marker, led to the selection of $50{\sim}100$ hygromycin B-resistant transformants per $1{\times}10^7$ conidia of A. niger. This efficiency is improved $10{\sim}20$ fold more than reported elsewhere. In order to avoid the difficulties in selection transformant from the over-growing non-transformant, I used top agar containing 900 ${\mu}g/ml$ of hygromycin. Genomic PCR and Southern analysis showed that all transformants contained single T-DNA insert per fungal genome. This technique offers an easier and more efficient method than that of using protoplast.

  • PDF

Genetic Manipulation and Transformation Methods for Aspergillus spp.

  • Son, Ye-Eun;Park, Hee-Soo
    • Mycobiology
    • /
    • 제49권2호
    • /
    • pp.95-104
    • /
    • 2021
  • Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.

Development of System-Wide Functional Analysis Platform for Pathogenicity Genes in Magnaporthe oryzae

  • Park, Sook-Young;Choi, Jaehyuk;Choi, Jaeyoung;Kim, Seongbeom;Jeon, Jongbum;Kwon, Seomun;Lee, Dayoung;Huh, Aram;Shin, Miho;Jung, Kyungyoung;Jeon, Junhyun;Kang, Chang Hyun;Kang, Seogchan;Lee, Yong-Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.9-9
    • /
    • 2014
  • Null mutants generated by targeted gene replacement are frequently used to reveal function of the genes in fungi. However, targeted gene deletions may be difficult to obtain or it may not be applicable, such as in the case of redundant or lethal genes. Constitutive expression system could be an alternative to avoid these difficulties and to provide new platform in fungal functional genomics research. Here we developed a novel platform for functional analysis genes in Magnaporthe oryzae by constitutive expression under a strong promoter. Employing a binary vector (pGOF1), carrying $EF1{\beta}$ promoter, we generated a total of 4,432 transformants by Agrobacterium tumefaciens-mediated transformation. We have analyzed a subset of 54 transformants that have the vector inserted in the promoter region of individual genes, at distances ranging from 44 to 1,479 bp. These transformants showed increased transcript levels of the genes that are found immediately adjacent to the vector, compared to those of wild type. Ten transformants showed higher levels of expression relative to the wild type not only in mycelial stage but also during infection-related development. Two transformants that T-DNA was inserted in the promotor regions of putative lethal genes, MoRPT4 and MoDBP5, showed decreased conidiation and pathogenicity, respectively. We also characterized two transformants that T-DNA was inserted in functionally redundant genes encoding alpha-glucosidase and alpha-mannosidase. These transformants also showed decreased mycelial growth and pathogenicity, implying successful application of this platform in functional analysis of the genes. Our data also demonstrated that comparative phenotypic analysis under over-expression and suppression of gene expression could prove a highly efficient system for functional analysis of the genes. Our over-expressed transformants library would be a valuable resource for functional characterization of the redundant or lethal genes in M. oryzae and this system may be applicable in other fungi.

  • PDF

Protoplast-Mediated Transformation of the Filamentous Fungus Cladosporium phlei: Evidence of Tandem Repeats of the Integrative Transforming Vector

  • Kim, Jung-Ae;Kim, Jung-Mi;Kim, Hwan-Gyu;Kim, Beom-Tae;Hwang, Ki-Jun;Park, Seung-Moon;Yang, Moon-Sik;Kim, Dae-Hyuk
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.179-183
    • /
    • 2009
  • To facilitate the genetic manipulation of Cladosporium phlei, a causal agent of leaf spot disease in timothy (Phleum pretense), protoplast-mediated transformation of C. phlei has been developed and the resulting transformants were characterized in this study. Hygromycin B resistance was applied as a dominant selection marker due to the sensitivity of C. phlei to this antibiotic. The transformation efficiency ranged from approximately 20-100 transformants per experiment. Southern blot analysis of stable transformants revealed that transformation occurred by way of stable integration of the vector DNA into the fungal chromosome. PCR analysis and plasmid rescuing of randomly selected transformants suggested that integration of tandem repeat copies of vector DNA was common. In addition, multiple integrations of the transforming vector at different chromosomal sites were also observed. The establishment of a transformation method for C. phlei facilitates strain improvement of this fungus and can be applied as an initial step in the molecular analysis of pigment production in this fungus.

IMPROVEMENT OF GENETIC TRANSFORMATION SYSTEM IN ASPERGILLUS ORYZAE

  • Lee, Jae-Won;Hahm, Young-Tae
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.215-218
    • /
    • 2000
  • A. oryzae에 있어서 protoplast를 이용한 형질전환이 아닌 세포벽이 부분적으로 분해된 cell을 이용하여 electroporation으로 형질전환시켰고, novozyme234, hemicellulase와 celluclast를 사용하여 형질전환 효율이 어떻게 다른지를 비교 분석 하였다. Hemicellulase를 $^{\sim}10^8$ cell에 처리하여 A. oryzae에서 83 transformants/10ug of DNA를 얻었고, novozyme234와 celluclast를 사용하였을 때는 4.3 transformants/10ug of DNA를 얻었다.

  • PDF

Agrobactrium tumefaciens-Mediated Transformation of Monascus ruber

  • Yang, Yun-Jung;Lee, In-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.754-758
    • /
    • 2008
  • Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied to Monascus ruber. The optimum cocultivation time was 84 h with an efficiency of 900 to 1,000 transformants when $1{\times}10^6$ spores were used with the same volume of bacteria. The stability of transform ants was over 98% after five generations. When M. ruber was transformed with A. tumefaciens YL-63 containing the green fluorescent protein gene (egfp), the green fluorescent signal was observed throughout hyphae, confirming expression of the gene. This efficient transformation and expression system of M. ruber by ATMT will facilitate the study of this fungus at a molecular genetic level.