• Title/Summary/Keyword: Fungal gene

Search Result 429, Processing Time 0.018 seconds

Phylogeny and Morphology of Sarcopodium terrigenum sp. nov., a Novel Fungal Species Isolated from Soil in Korea

  • Elderiny, Nabil Salah;Das, Kallol;Lee, Seung-Yeol;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.49 no.2
    • /
    • pp.175-181
    • /
    • 2021
  • A fungal strain was isolated from a soil sample collected in Korea and designated as YW23-8. Based on a sequence analysis of the internal transcribed spacer (ITS) regions, the isolate was assigned to the genus Sarcopodium. Moreover, a phylogenetic analysis based on the concatenated nucleotide sequences of the ITS regions and the large subunit of the nuclear ribosomal RNA (LSU) gene showed that the strain YW23-8 occupies a distinct phylogenetic position within Sarcopodium. The isolate had significant differences from its closest neighbors, S. circinosetiferum, S. circinatum, S. macalpinei, and S. vanillae. Morphological features such as different conidial structures, the absence of septation in conidia, and the presence of milky white watery droplets along with the results of the phylogenetic analysis clearly distinguish YW23-8 from the closest Sarcopodium species. We therefore conclude that strain YW23-8 represents a novel species of the genus Sarcopodium for which we propose the name Sarcopodium terrigenum.

Development of Penicillium italicum-Specific Primers for Rapid Detection among Fungal Isolates in Citrus

  • Chen, Kai;Tian, Zhonghuan;Jiang, Fatang;Long, Chao-an
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.984-988
    • /
    • 2019
  • Blue mold in citrus is caused by Penicillium italicum. In this study, the P. italicum-specific primers were developed for rapid detection based on the conserved genes RPB1 and RPB2 among Penicillium genomes. The two primer pairs RPB1-a and RPB1-b proved to be specific to detect P. italicum. The PCR assay among 39 fungal isolates and the colonial, pathogenic morphologies and molecular methods validated the specificity and reliability of these two primer pairs. This report provided a method and P. italicum-specific primers, which might greatly contribute to citrus postharvest industry.

New Records of Four Species Belonging to Eurotiales from Soil and Freshwater in Korea

  • Pangging, Monmi;Nguyen, Thuong T.T.;Lee, Hyang Burm
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.154-164
    • /
    • 2019
  • Four strains of Penicillium and Talaromyces species are described and illustrated in an inventory of fungal species belonging to Eurotiales. The strains, CNUFC-DDS17-1, CNUFC-DDS27-1, CNUFC-PTM72-1, and CNUFC-YJW3-31, were isolated from soil and freshwater samples from South Korea. Based on their morphological characteristics and sequence analyses by the combined b-tubulin and calmodulin gene, the CNUFC-DDS17-1, CNUFC-DDS27-1, CNUFC-PTM72-1, and CNUFC-YJW3-31 isolates were identified as Penicillium pasqualense, Penicillium sanguifluum, Talaromyces apiculatus, and Talaromyces liani, respectively. The designated strains were found to represent a previously undescribed species of Korean fungal biota. In this study, detailed morphological descriptions and phylogenetic relationships of these species are provided.

Characterization of Three Species of Sordariomycetes Isolated from Freshwater and Soil Samples in Korea

  • Lee, Seo Hee;Park, Hyo Sun;Nguyen, Thuong T.T.;Lee, Hyang Burm
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.20-30
    • /
    • 2019
  • During a survey of fungal diversity in the class Sordariomycetes, 3 fungal strains, CNUFC-KMHY6-1, CNUFC-MSW24-2-11, and CNUFC-GW2S-4 were isolated from soil and freshwater samples, respectively in Korea. The strains were analyzed both morphologically and phylogenetically on the basis of internal transcribed spacer and RNA polymerase II second largest subunit gene sequences. On the basis of their morphology and phylogeny, CNUFC-KMHY6-1, CNUFC-MSW24-2-11, and CNUFC-GW2S-4 isolates were identified as Arcopilus aureus, Memnoniella echinata, and Stachybotrys sansevieriae, respectively. To the best of our knowledge, Ar. aureus and M. echinata have not been previously recorded in Korea, and this is the first report of S. sansevieriae from freshwater niche.

Molecular and Morphological Confirmation of Three Undescribed Species of Mortierella from Korea

  • Nguyen, Thuong T.T.;Park, Se Won;Pangging, Monmi;Lee, Hyang Burm
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.31-39
    • /
    • 2019
  • Three fungal isolates designated as CNUFC-YR329-1, CNUFC-PTS103-1, and CNUFC-PTS2-1 were discovered during a survey of fungal diversity of the order Mortierellales from freshwater and pine tree rhizosphere soil samples in Korea. The strains were analyzed morphologically and phylogenetically based on the internal transcribed spacer (ITS) and large subunit (LSU) of ribosomal DNA gene sequences. Based on their morphology and phylogeny, the three isolates were identified as Mortierella elongata, M. horticola, and M. humilis, respectively. To the best of our knowledge, M. elongata, M. horticola, and M. humilis, belonging to an undiscovered taxon, have not been previously described in Korea.

Genetic Manipulation and Transformation Methods for Aspergillus spp.

  • Son, Ye-Eun;Park, Hee-Soo
    • Mycobiology
    • /
    • v.49 no.2
    • /
    • pp.95-104
    • /
    • 2021
  • Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.

RNA Modification and Its Implication in Plant Pathogenic Fungi

  • Jeon, Junhyun;Lee, Song Hee
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.505-511
    • /
    • 2021
  • Interaction of a pathogen with its host plant requires both flexibility and rapid shift in gene expression programs in response to environmental cues associated with host cells. Recently, a growing volume of data on the diversity and ubiquity of internal RNA modifications has led to the realization that such modifications are highly dynamic and yet evolutionarily conserved system. This hints at these RNA modifications being an additional regulatory layer for genetic information, culminating in epitranscriptome concept. In plant pathogenic fungi, however, the presence and the biological roles of RNA modifications are largely unknown. Here we delineate types of RNA modifications, and provide examples demonstrating roles of such modifications in biology of filamentous fungi including fungal pathogens. We also discuss the possibility that RNA modification systems in fungal pathogens could be a prospective target for new agrochemicals.

Phylogenetic Relationships of the Mutualistic Fungi Associated with Macrotermes subhyalinus in Oman

  • Hilal S. AlShamakhi;Abdullah M. Al-Sadi;Lyn G. Cook
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.281-287
    • /
    • 2023
  • The symbiotic association between fungus-gardening termites Macrotermes and its fungal symbiont has a moderate degree of specificity-although the symbiotic fungi (Termitomyces) form a monophyletic clade, there is not a one-to-one association between termite species and their fungus-garden associates. Here, we aim to determine the origin and phylogenetic relationships of Termitomyces in Oman. We used sequences of the internal transcribed spacer region (ITS) and the nuclear large subunit ribosomal RNA (LSU rRNA, 25S) gene and analyzed these with sequences of Termitomyces from other geographic areas. We find no evidence for more than a single colonization of Oman by Termitomyces. Unexpectedly, we find Termitomyces in Oman is most closely related to the symbiont of M. subhyalinus in West Africa rather than to those of geographically closer populations in East Africa.

First Discovery of Stereostratum corticioides Causing Rust on the Culm of the Bamboo Pseudosasa japonica

  • Su-Hyun Kim;Tae-Jin Choi
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.20-25
    • /
    • 2024
  • A fungus strain Stereostratum corticioides PKVL1, belonging to the family Pucciniaceae that causes rust in plants, was discovered on the sheath of the bamboo Pseudosasa japonica leading to the death of the infected bamboo in the following year. Microscopic observation of the yellow fungal mass revealed teliospores with an oval, one-septate (two-celled) structure. The average length and width of teliospores were 31.83±3.57 ㎛ and 20.74±1.72 ㎛, respectively. The large-subunit ribosomal RNA gene was amplified using the LR0R and LR7 primers, showing that the strain PKVL1 had a similarity of 99.34% to previously reported S. corticioides. In particular, the two Stereostratum strains form a separate cluster among the fungi in the family Pucciniaceae. This is the first report in the Republic of Korea of fungal rust occurring on the culm of bamboo rather than on the leaves.

Functional Characterization of Genes Located at the Aurofusarin Biosynthesis Gene Cluster in Gibberella zeae

  • Kim, Jung-Eun;Kim, Jin-Cheol;Jin, Jian-Ming;Yun, Sung-Hwan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.8-16
    • /
    • 2008
  • Aurofusarin is a polyketide pigment produced by some Fusarium species. The PKS12 and GIP1 genes, which encode a putative type I polyketide synthase (PKS) and a fungal laccase, respectively, are known to be required for aurofusarin biosynthesis in Gibberella zeae (anamorph: Fusarium graminearum). The ten additional genes, which are located within a 30 kb region of PKS12 and GIP1 and regulated by a putative transcription factor (GIP2), organize the aurofusarin biosynthetic cluster. To determine if they are essential for aurofusarin production in G. zeae, we have employed targeted gene deletion, complementation, and chemical analyses. GIP7, which encodes O-methyltransferase, is confirmed to be required for the conversion of norrubrofusarin to rubrofusarin, an intermediate of aurofusarin. GIP1-, GIP3-, and GIP8-deleted strains accumulated rubrofusarin, indicating those gene products are essential enzymes for the conversion of rubrofusarin to aurofusarin. Based on the phenotypic changes in the gene deletion strains examined, we propose a possible pathway for aurofusarin biosynthesis in G. zeae. Our results would provide important information for better understanding of naphthoquinone biosynthesis in other fdarnentous fungi as well as the aurofusarin biosynthesis in G. zeae.