DOI QR코드

DOI QR Code

Molecular and Morphological Confirmation of Three Undescribed Species of Mortierella from Korea

  • Nguyen, Thuong T.T. (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Park, Se Won (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Pangging, Monmi (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University)
  • Received : 2018.08.16
  • Accepted : 2018.11.05
  • Published : 2019.03.01

Abstract

Three fungal isolates designated as CNUFC-YR329-1, CNUFC-PTS103-1, and CNUFC-PTS2-1 were discovered during a survey of fungal diversity of the order Mortierellales from freshwater and pine tree rhizosphere soil samples in Korea. The strains were analyzed morphologically and phylogenetically based on the internal transcribed spacer (ITS) and large subunit (LSU) of ribosomal DNA gene sequences. Based on their morphology and phylogeny, the three isolates were identified as Mortierella elongata, M. horticola, and M. humilis, respectively. To the best of our knowledge, M. elongata, M. horticola, and M. humilis, belonging to an undiscovered taxon, have not been previously described in Korea.

Keywords

References

  1. Coemans E. Quelques hyphomycetes nouveaux. - Ire. - I. Mortierella polycephala et II. Martensella pectinata. Bull l'Acad Royale Sci, Lett, Beaux-Arts Belgique, Ser. 2. 1863;15:536-544.
  2. Hibbett DS, Binder M, Bischoff JF, et al. A higherlevel phylogenetic classification of the fungi. Mycol Res. 2007;111:509-547. https://doi.org/10.1016/j.mycres.2007.03.004
  3. Hoffmann K, Pawlowska J, Walther G, et al. The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia. 2013;30:57-76. https://doi.org/10.3767/003158513X666259
  4. Spatafora JW, Chang Y, Benny GL, et al. A phylum- level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108:1028-1046. https://doi.org/10.3852/16-042
  5. Wagner L, Stielow B, Hoffmann K, et al. A comprehensive molecular phylogeny of the Mortierellales (Mortierellomycotina) based on nuclear ribosomal DNA. Persoonia. 2013;30:77-93. https://doi.org/10.3767/003158513X666268
  6. Kirk PM. Mortierella elongata. IMI Descr Fungi Bact. 1997;1303:1-2.
  7. Linnemann G. Die Mucorineen-Gattung Mortierella Coemans. Pflanzenforschung. 1941;23:1-64.
  8. Degawa Y, Gams W. A new species of Mortierella, and an associated sporangiiferous mycoparasite in a new genus. Nothadelphia Stud Mycol. 2004;50:576-572.
  9. Ariyawansa HA, Hyde KD, Jayasiri SC, et al. Fungal diversity notes 111-252 - taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015;75:27-274. https://doi.org/10.1007/s13225-015-0346-5
  10. Hyde KD, Hongsanan S, Jeewon R, et al. Fungal diversity notes 367-490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;80:1-270. https://doi.org/10.1007/s13225-016-0373-x
  11. Chien CY, Kuhlman EG, Gams W. Zygospores in two Mortierella species with "stylospores". Mycologia. 1974;66:114-121. https://doi.org/10.2307/3758460
  12. Huang C, Chen XF, Xiong L, et al. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv. 2013;31:129-139. https://doi.org/10.1016/j.biotechadv.2012.08.010
  13. Tamayo-Velez A, Osorio NW. Soil fertility improvement by litter decomposition and inoculation with the fungus Mortierella sp. in avocado plantations of Colombia. Commun Soil Sci Plant Anal. 2018;49:139-147. https://doi.org/10.1080/00103624.2017.1417420
  14. Osorio NW, Habte M. Soil phosphate desorption induced by a phosphate-solubilizing fungus. Commun Soil Sci Plant Anal. 2014;45:451-460. https://doi.org/10.1080/00103624.2013.870190
  15. Ellegaard-Jensen L, Aamand J, Kragelund BB, et al. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation. 2013;24:765-774. https://doi.org/10.1007/s10532-013-9624-7
  16. Gams W. A key to the species of Mortierella. Persoonia. 1977;9:381-391.
  17. Lee YS, Jung HY, Lee HB, et al. National list of species of Korea. Ascomycota, Glomeromycota, Zygomycota, Myxomycota, Oomycota. Korea: National Institute of Biological Resources Ministry of Environment; 2015.
  18. Lee HY, Nguyen TT, Mun HY, et al. Confirmation of two undescribed fungal species from Dokdo of Korea based on current classification system using multi loci. Mycobiology. 2015;43:392-401. https://doi.org/10.5941/MYCO.2015.43.4.392
  19. Nguyen TTT, Lee HB. Characterization of a zygomycete fungus, Mortierella minutissima from freshwater of Yeongsan river in Korea. Kor J Mycol. 2016;44:346-349. https://doi.org/10.4489/KJM.2016.44.4.346
  20. Khalmuratova I, Kim H, Nam YJ, et al. Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the West Coast of Korea. Mycobiology. 2015; 43:373-383. https://doi.org/10.5941/MYCO.2015.43.4.373
  21. Nguyen TT, Jung HY, Lee YS, et al. Phylogenetic status of two undescribed zygomycete species from Korea: Actinomucor elegans and Mucor minutus. Mycobiology. 2017;45:344-352. https://doi.org/10.5941/MYCO.2017.45.4.344
  22. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York, N.Y: Academic Press, Inc.; 1990. p. 315-322.
  23. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  24. Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  25. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.
  26. Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
  27. Budziszewska J, Boulahdjel A, Wilk M, et al. Soil zygomycetous fungi in Biebrza National Park (Northeast Poland). Polish Bot J. 2010;55:391-407.
  28. Xu L, Ravnskov S, Larsen J, et al. Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum. FEMS Microbiol Ecol. 2012;82:736-745. https://doi.org/10.1111/j.1574-6941.2012.01445.x
  29. Li F, Chen L, Redmile-Gordon M, et al. Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil. Land Degrad Dev. 2018;29:1642-1651. https://doi.org/10.1002/ldr.2965
  30. Chlebicki A, Zielenkiewicz U, Wilczek AM. Fungi are not involved in biofilm formation on rock wall in subterranean arsenic mine in Poland. Nova Hedw. 2014;99:255-269. https://doi.org/10.1127/0029-5035/2014/0178
  31. Thormann MN, Currah RS, Bayley SE. Microfungi isolated from Sphagnum fuscum from a Southern Boreal Bog in Alberta, Canada. The Bryologist. 2001;104:548-559. https://doi.org/10.1639/0007-2745(2001)104[0548:MIFSFF]2.0.CO;2
  32. Chlebicki A, Spisak W. Amauroascus kuehnii and other fungi isolated from a deer horn in Poland. Polish Bot J. 2016;61:161-166. https://doi.org/10.1515/pbj-2016-0016
  33. Dematheis F, Kurtz B, Vidal S, et al. Microbial communities associated with the larval gut and eggs of the western corn rootworm. PLOS ONE. 2012;7(10):e44685. https://doi.org/10.1371/journal.pone.0044685
  34. Eroshin VK, Dedyukhina EG, Chistyakova TI, et al. Arachidonic-acid production by species of Mortierella. World J Microbiol Biotechnol. 1996; 12:91-96. https://doi.org/10.1007/BF00327809
  35. Jang HD, Lin YY, Yang SS. Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Bioresour Technol. 2005;96:1633-1644. https://doi.org/10.1016/j.biortech.2004.12.027
  36. Grantina-Levina L, Berzina A, Nikolajeva V, et al. Production of fatty acids by Mortierella and Umbelopsis species isolated from temperate climate soils. Environ Exp Bio. 2014;12:15-27.
  37. Vadivelan G, Venkateswaran G. Production and enhancement of omega-3 fatty acid from Mortierella alpina CFR-GVI5: its food and therapeutic application. Biomed Res Int. 2014;2014:1. DOI:10.1155/2014/657414
  38. Du ZY, Alvaro J, Hyden B, et al. Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnol Biofuels. 2018;11:174. DOI:10.1186/s13068-018-1172-2
  39. Devi HR, Dkhar MS. Comparative study on soil fungal diversity of Mawphland sacred grove and disturbed forest north east India. Ind J Sci Res Tech. 2014;2:64-72.
  40. Jackson RM. Studies of fungi in pasture soils. III. Physiological studies on some fungal isolates from the root surface and from organic debris. New Zeal J Arg Res. 1965;8:878-888. https://doi.org/10.1080/00288233.1965.10423722
  41. Holdenrieder O, Sieber TN. Fungal associations of serially washed healthy non-mycorrhizal roots of Picea abies. Mycol Res. 1992;96:151-156. https://doi.org/10.1016/S0953-7562(09)80932-5
  42. Borah G, Bhattacharyya LH, Vipin P, et al. Rhizospheric fungal diversity associated with Meyna spinosa Roxb: A threatened and ethnomedicinally important plant of North-East India. Int J Curr Microbiol App Sci. 2015;4:295-303.
  43. Domsch KH, Gams W, Anderson TH. Compendium of soil fungi. Vols. 1 and 2. London: Academic Press; 1980.
  44. Grantina-Levina L, Kasparinskis R, Tabors G, et al. Features of saprophytic soil microorganism communities in conifer stands with or without Heterobasidion annosum sensu lato infection: a special emphasis on Penicillium spp. Environ Exp Biol. 2013;11:23-38.
  45. Okorski A, Majchrzak B. Fungi isolated from soil before the seeding and after harvest of pea (Pisum sativum L.) after application of bio-control product EM 1 TM. Acta Agrobot. 2012;60:113-121. https://doi.org/10.5586/aa.2007.014
  46. Makipaa R, Rajala T, Schigel D, et al. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J. 2017;11:1964-1974. https://doi.org/10.1038/ismej.2017.57
  47. Dyal SD, Narine SS. Implications for the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res Int. 2005;38: 445-467. https://doi.org/10.1016/j.foodres.2004.11.002
  48. Kosa G, Zimmermann B, Kohler A, et al. Highthroughput screening of Mucoromycota fungi for production of low- and high-value lipids. Biotechnol Biofuels. 2018;11:66. DOI:10.1186/s13068-018-1070-7
  49. Blanchette RA. A review of microbiological deterioration found in archaeological wood from different environments. Int Biodeterior Biodegradation. 2000;46:189-204. https://doi.org/10.1016/S0964-8305(00)00077-9
  50. Varnait_e R, Paskevicius A, Raudonien_e V. Cellulose degradation in rye straw by micromycetes and their complexes. Ekologija. 2008;54: 29-31. https://doi.org/10.2478/V10055-008-0006-0

Cited by

  1. Discovery of novel fungal species and pathogens on bat carcasses in a cave in Yunnan Province, China vol.9, pp.1, 2020, https://doi.org/10.1080/22221751.2020.1785333
  2. The Status of Soil Microbiome as Affected by the Application of Phosphorus Biofertilizer: Fertilizer Enriched with Beneficial Bacterial Strains vol.21, pp.21, 2019, https://doi.org/10.3390/ijms21218003
  3. Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils vol.11, pp.1, 2019, https://doi.org/10.3390/agriculture11010007
  4. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa vol.111, pp.1, 2021, https://doi.org/10.1007/s13225-021-00489-3