• 제목/요약/키워드: Fundamental Mode

검색결과 511건 처리시간 0.023초

Soil-structure interaction effect on active control of multi-story buildings under earthquake loads

  • Chen, Genda;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.517-532
    • /
    • 2000
  • A direct output feedback control scheme was recently proposed by the authors for single-story building structures resting on flexible soil body. In this paper, the control scheme is extended to mitigate the seismic responses of multi-story buildings. Soil-structure interaction is taken into account in two parts: input at the soil-structure interface/foundation and control algorithm. The former reflects the effect on ground motions and is monitored in real time with accelerometers at foundation. The latter includes the effect on the dynamic characteristics of structures, which is formulated by modifying the classical linear quadratic regulator based on the fundamental mode shape of the soil-structure system. Numerical result on the study of a $\frac{1}{4}$-scale three-story structure, supported by a viscoelastic half-space of soil mass, have demonstrated that the proposed algorithm is robust and very effective in suppressing the earthquake-induced vibration in building structures even supported on a flexible soil mass. Parametric studies are performed to understand how soil damping and flexibility affect the effectiveness of active tendon control. The selection of weighting matrix and effect of soil property uncertainty are investigated in detail for practical applications.

A displacement-based seismic design method with damage control for RC buildings

  • Ayala, A. Gustavo;Castellanos, Hugo;Lopez, Saul
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.413-434
    • /
    • 2012
  • This paper presents a displacement-based seismic design method with damage control, in which the targets for the considered performance level are set as displacements and a damage distribution is proposed by the designer. The method is based on concepts of basic structural dynamics and of a reference single degree of freedom system associated to the fundamental mode with a bilinear behaviour. Based on the characteristics of this behaviour curve and on the requirements of modal spectral analysis, the stiffness and strength of the structural elements of the structure satisfying the target design displacement are calculated. The formulation of this method is presented together with the formulations of two other existing methods currently considered of practical interest. To illustrate the application of the proposed method, 5 reinforced concrete plane frames: 8, 17 and 25 storey regular, and 8 and 12 storey irregular in elevation. All frames are designed for a seismic demand defined by single earthquake record in order to compare the performances and damage distributions used as design targets with the corresponding results of the nonlinear step by step analyses of the designed structures subjected to the same seismic demand. The performances and damage distributions calculated with these analyses show a good agreement with those postulated as targets.

Structural identification of concrete arch dams by ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Advances in concrete construction
    • /
    • 제1권3호
    • /
    • pp.227-237
    • /
    • 2013
  • Modal testing, widely accepted and applied method for determining the dynamic characteristics of structures for operational conditions, uses known or unknown vibrations in structures. The method's common applications includes estimation of dynamic characteristics and also damage detection and monitoring of structural performance. In this study, the structural identification of concrete arch dams is determined using ambient vibration tests which is one of the modal testing methods. For the purpose, several ambient vibration tests are conducted to an arch dam. Sensitive accelerometers were placed on the different points of the crest and a gallery of the dam, and signals are collected for the process. Enhanced Frequency Domain Decomposition technique is used for the extraction of natural frequencies, mode shapes and damping ratios. A total of eight natural frequencies are attained by experimentally for each test setup, which ranges between 0-12 Hz. The results obtained from each ambient vibration tests are presented and compared with each other in detail. There is a good agreement between the results for all measurements. However, the theoretical fundamental frequency of Berke Arch Dam is a little different from the experimental.

직사각형판(直四角形板)의 접수진동(接水振動) (The Vibration of an Elastic Rectangular Plate in a Fluid)

  • 김극천
    • 대한조선학회지
    • /
    • 제13권4호
    • /
    • pp.1-10
    • /
    • 1976
  • It is a well-known phenomenon that, in the case of vibrations of an elastic body in a fluid such as water, the presence of the surrounding fluid has the effect of lowering the natural frequencies of the vibration as compared with those in air or vacuum on account of the increased inertia, i.e. added mass. In this report, defining the mass increase factor as the ratio of added mass to vibration mass of the body in air, the author investigated the mass increased factor of an elastic plate vibrating in the fluid. It is assumed that the edges of the plate are simply supported, and that the surrounding fluid is an infinite ideal one. For the problem formulation the elliptical cylindrical coordinate system is adopted, so that a rectangular plate may be represented by a sheet degenerated from an elliptical cylinder. By virtue of the coordinate system adopted, plates which are chordwisely finite and lengthwisely contineous could directly be treated, but plates which are chordwisely finite in both directions could not be treated directly. For the latter, hence, plates which are chordwisely finite and lengthwisely semi-finite are investigated as an appropriate approximation. Some examples of the mass increase factor are numerically calculated for the fundamental mode and modes of zero or one nodal line in each direction with the range of the aspect ratio from 1 to 10 or more.

  • PDF

Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM

  • Mohammadimehr, Mehdi;Afshari, Hasan;Salemi, M.;Torabi, K.;Mehrabi, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.525-544
    • /
    • 2019
  • In the present study, buckling and free vibration analyses of annular thin sector plate made of functionally graded materials (FGMs) resting on visco-elastic Pasternak foundation, subjected to external radial, circumferential and shear in-plane loads is investigated. Material properties are assumed to vary along the thickness according to an power law with Poisson's ratio held constant. First, based on the classical plate theory (CPT), the governing equation of motion is derived using Hamilton's principle and then is solved using the generalized differential quadrature method (GDQM). Numerical results are compared to those available in the literature to validate the convergence and accuracy of the present approach. Finally, the effects of power-law exponent, ratio of radii, thickness of the plate, sector angle, and coefficients of foundation on the fundamental and higher natural frequencies of transverse vibration and critical buckling loads are considered for various boundary conditions. Also, vibration and buckling mode shapes of functionally graded (FG) sector plate have been shown in this research. One of the important obtained results from this work show that ratio of the frequency of FG annular sector plate to the corresponding values of homogeneous plate are independent from boundary conditions and frequency number.

Fragility assessment for electric cabinet in nuclear power plant using response surface methodology

  • Tran, Thanh-Tuan;Cao, Anh-Tuan;Nguyen, Thi-Hong-Xuyen;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.894-903
    • /
    • 2019
  • An approach for collapse risk assessment is proposed to evaluate the vulnerability of electric cabinet in nuclear power plants. The lognormal approaches, namely maximum likelihood estimation and linear regression, are introduced to establish the fragility curves. These two fragility analyses are applied for the numerical models of cabinets considering various boundary conditions, which are expressed by representing restrained and anchored models at the base. The models have been built and verified using the system identification (SI) technique. The fundamental frequency of the electric cabinet is sensitive because of many attached devices. To bypass this complex problem, the average spectral acceleration $S_{\bar{a}}$ in the range of period that cover the first mode period is chosen as an intensity measure on the fragility function. The nonlinear time history analyses for cabinet are conducted using a suite of 40 ground motions. The obtained curves with different approaches are compared, and the variability of risk assessment is evaluated for restrained and anchored models. The fragility curves obtained for anchored model are found to be closer each other, compared to the fragility curves for restrained model. It is also found that the support boundary conditions played a significant role in acceleration response of cabinet.

Torsional wave dispersion in a bi-layered hollow cylinder with inhomogeneous initial stresses caused by internal and external radial pressures

  • Akbarov, Surkay D.;Bagirov, Emin T.
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.571-586
    • /
    • 2021
  • The present paper studies the influence of the inhomogeneous initial stresses in the bi-layered hollow cylinder and it is assumed that these stresses are caused by the hydrostatic pressures acting on the interior and outer free surfaces of the cylinder. The study is made by utilizing the version of the three-dimensional linearized theory of elastic waves in bodies with initial stresses for which the initial stress-strain state in bodies is determined within the scope of the classical linear theory of elasticity. For the solution to the corresponding eigenvalue problem, the discrete-analytical method is employed. Numerical results are presented and analyzed for concrete selected pairs of materials. According to these results and their analyses, it is established that, unlike homogeneous initial stresses, the influence of the inhomogeneous initial stresses on the torsional wave dispersion has not only quantitative but also qualitative character. For instance, in particular, it is established that as a result of the initial stresses caused by the hydrostatic pressure acting in the interior free surface of the cylinder, the cut-off frequency appears for the fundamental dispersive mode and the values of this frequency increase with the intensity of this pressure.

Shaking table test of liquid storage tank with finite element analysis considering uplift effect

  • Zhou, Junwen;Zhao, Ming
    • Structural Engineering and Mechanics
    • /
    • 제77권3호
    • /
    • pp.369-381
    • /
    • 2021
  • The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.

A complete 3D map of Bell Glasstone spatial correction factors for BRAHMMA subcritical core

  • Shukla, Shefali;Roy, Tushar;Kashyap, Yogesh;Shukla, Mayank;Singh, Prashant
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3488-3493
    • /
    • 2022
  • Accelerator driven subcritical systems have long been discussed as facilities which can be used for solving the nuclear waste problem. The physics of these systems is very different from conventional reactors and new techniques had to be developed for reactivity monitoring. One such technique is the Area Ratio Method which studies the response of a subcritical system upon insertion of a large number of neutron pulses. An issue associated with this technique is the spatial dependence of measured reactivity which is intrinsic to the sub criticality of the system since the reactor does not operate on the fundamental mode and measured reactivity depends on the detector position. This is generally addressed by defining Bell-Glasstone spatial correction factor. This factor upon multiplication with measured reactivity gives the correct reactivity which is independent of detector location. Monte Carlo Methods are used for evaluating these factors. This paper presents a complete three dimensional map of spatial correction factors for BRAHMMA subcritical system. In addition, the dataset obtained also helps in identifying detector locations where the correction factor is close to unity, thereby implying no correction if the detector is used at those locations.

Assessment of seismic demand and damping of a reinforced concrete building after CFRP jacketing of columns

  • Inci, Pinar;Goksu, Caglar;Tore, Erkan;Binbir, Ergun;Ates, Ali Osman;Ilki, Alper
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.651-665
    • /
    • 2022
  • While the lateral confinement provided by an FRP jacket to a concrete column is passive in nature, confinement is activated when the concrete expands due to additional compression stresses or significant shear deformations. This characteristic of FRP jacketing theoretically leads to similar initial stiffness properties of FRP retrofitted buildings as the buildings without retrofit. In the current study, to validate this theoretical assumption, the initial stiffness characteristics, and thus, the potential seismic demands were investigated through forced vibration tests on two identical full-scale substandard reinforced concrete buildings with or without FRP retrofit. Power spectral density functions obtained using the acceleration response data captured through forced vibration tests were used to estimate the modal characteristics of these buildings. The test results clearly showed that the natural frequencies and the mode shapes of the buildings are quite similar. Since the seismic demand is controlled by the fundamental vibration modes, it is confirmed using vibration-based full-scale tests that the seismic demands of RC buildings remain unchanged after CFRP jacketing of columns. Furthermore, the damping characteristics were also found similar for both structures.