• Title/Summary/Keyword: Functionally Gradient Material

Search Result 182, Processing Time 0.023 seconds

Thermomechanical Analysis of Functionally Gradient Al-$SiC_{p}$ Composite for Electronic Packaging (전자패키지용 경사조성 Al-$SiC_{p}$ 복합재료의 열 . 기계적 변형특성 해석)

  • 송대현;최낙봉;김애정;조경목;박익민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.175-183
    • /
    • 2000
  • The internal residual stresses within the multilayered structure with shan interface induced by the difference in thermal expansion coefficient between the materials of adjacent layers often provide the source of failure such as delamination of interfaces and etc. Recent development of the multilayered structure with functionally graded interface would be the solution to prevent this kind of failure. However a systematic thermo-mechanical analysis is needed fur the customized structural design of multilayered structure. In this study, theoretical model for the thermo-mechanical analysis is developed for multilayered structures of the Al-$SiC_p$ functionally graded composite for electronic packaging. The evolution of curvature and internal stresses in response to temperature variations is presented for the different combinations of geometry. The resultant analytical solutions are used for the optimal design of the multilayered structures with functionally graded interface as well as with sharp interface.

  • PDF

On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modeling

  • Liu, Yang;Wang, Xiaofeng;Liu Li;Wu, Bin;Yang, Qin
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.47-61
    • /
    • 2022
  • The present research investigates the dynamic behavior of a rotating functionally graded (FG) nonlocal cylindrical beam. The cylindrical beam is mathematically modeled via third-order beam theory linked with nonlocal strain gradient theory. The tube structure is made of functionally graded materials composed of Aluminum oxide coated on the Nickel, which the mechanical properties vary in the tube radius direction according to the power law. The bending harmonic force is applied in the tube length middle. The nonlocal spinning equations of the tube are derived via the energy method of the Hamilton principle, and they are solved via a robust numerical procedure for different boundary conditions. The main application of the rotating nanostructures is for the production of small-scale motors and devices and the drug-delivery application, the presented results can help the researcher have a better view regarding the different conditions.

Characterization of SiC/C Functionally Gradient Materials Growth Process by CVD Technique

  • Park, Chinho;Lee, Jinwook;Jung, Soon-Deuk;Yi, Sung-Chul;Kim, Yootaek
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.7-11
    • /
    • 1997
  • SiC/C functionally gradient material (FGMs) were formed on graphite substrates by hot-wall chemical vapor deposition (CVD) technique using the SiCl$_4$-C$_3$H8-H$_2$ chemistry. Thermochemical equilibrium calculations were carried out to investigate the deposition process. The effect of process variables on the deposition yield and the SiC/C ratio in deposited layers was studied in detail. Calculated results showed a reasonable agreement with the experiment in a qualitative sense. SiC/C FGMs with excellent mechanical and thermal properties could be successfully formed on graphite substrates by carefully controlling the compositions in the deposited layers.

  • PDF

Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation

  • Setoodeh, AliReza;Rezaei, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.209-220
    • /
    • 2017
  • The purpose of this paper is to study the geometrically nonlinear free vibration of functionally graded nano/micro beams (FGNBs) based on the modified couple stress theory. For practical applications, some analytical expressions of nonlinear frequencies for FGNBs on a nonlinear Pasternak foundation are developed. Hamilton's principle is employed to obtain nonlinear governing differential equations in the context of both Euler-Bernoulli and Timoshenko beam theories for a comprehensive investigation. The modified continuum theory contains one material length scale parameter to capture the size effect. The variation of two-constituent material along the thickness is modeled using Reddy's power-law. Also, the Mori-Tanaka method as an accurate homogenization technique is implemented to estimate the effective material properties of the FGNBs. The results are presented for both hinged-hinged and clamped-clamped boundary conditions. The nonlinear partial differential equations are reduced to ordinary differential equations using Galerkin method and then the powerful method of homotopy analysis is utilized to obtain the semi-analytical solutions. Eventually, the presented analytical expressions are used to examine the influences of the length scale parameter, material gradient index, and elastic foundation on the nonlinear free vibration of FGNBs.

Temperature-Dependent Stress Analysis of Rotating Functionally Graded Material Gas Turbine Blade Considering Operating Temperature and Ceramic Particle Size (운전온도와 세라믹 입자크기를 고려한 회전하는 경사기능성 가스터빈 블레이드의 응력해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.193-203
    • /
    • 2014
  • Temperature-dependent stress analysis and heat transfer analysis of a rotating gas turbine blade made of functionally graded materials (FGMs) are presented considering turbine operating temperature and ceramic particle size. The material properties of functionally graded materials are assumed to vary continuously and smoothly across the thickness of the thin-walled blade. For obtaining system stiffness reflecting these characteristics, the one-dimensional heat transfer equation is applied along the thickness of the thin-walled blade for determining the temperature distribution. Using the results of the temperature analysis, the equations of motion of a rotating blade are derived with hybrid deformation variable modeling method along with the Rayleigh-Ritz assumed mode methods. The validity of the derived rotating blade model is evaluated by comparing its transient responses and temperature distribution with the results obtained using a commercial finite element code. The maximum tensile stress with operating speed and gradient index are obtained. Furthermore, the gradient index that minimizes blade temperature was investigated.

Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM

  • Abdulrazzaq, Mohammed Abdulraoof;Muhammad, Ahmed K.;Kadhim, Zeyad D.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.201-217
    • /
    • 2020
  • This paper employs differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT) for studying free vibrational characteristics of porous functionally graded (FG) nanoplates coupled by visco-elastic foundation. A secant function based refined plate theory is used for mathematical modeling of the nano-size plate. Two scale factors are included in the formulation for describing size influences based on NSGT. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. Visco-elastic foundation is presented based on three factors including a viscous layer and two elastic layers.The governing equations achieved by Hamilton's principle are solved implementing DQM. The nanoplate vibration is shown to be affected by porosity, temperature rise,scale factors and viscous damping.

Stresses in FGM pressure tubes under non-uniform temperature distribution

  • Eraslan, Ahmet N.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.393-408
    • /
    • 2007
  • The effects of material nonhomogeneity and nonisothermal conditions on the stress response of pressurized tubes are assessed by virtue of a computational model. The modulus of elasticity, the Poisson's ratio, the yield strength, and the coefficient of thermal expansion, are assumed to vary nonlinearly in the tube. A logarithmic temperature distribution within the tube is proposed. Under these conditions, it is shown that the stress states and the magnitudes of response variables are affected significantly by both the material nonhomogeneity and the existence of the radial temperature gradient.

The dynamic instability of FG orthotropic conical shells within the SDT

  • Sofiyev, Abdullah H.;Zerin, Zihni;Allahverdiev, Bilender P.;Hui, David;Turan, Ferruh;Erdem, Hakan
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.581-591
    • /
    • 2017
  • The dynamic instability of truncated conical shells subjected to dynamic axial load within first order shear deformation theory (FSDT) is examined. The conical shell is made from functionally graded (FG) orthotropic material. In the formulation of problem a dynamic version of Donnell's shell theory is used. The equations are converted to a Mathieu-Hill type differential equation employing Galerkin's method. The boundaries of main instability zones are found applying the method proposed by Bolotin. To verify these results, the results of other studies in the literature were compared. The influences of material gradient, orthotropy, as well as changing the geometric dimensions on the borders of the main areas of the instability are investigated.

A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Shahsavari, Davood;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • In this paper, a new size-dependent quasi-3D plate theory is presented for wave dispersion analysis of functionally graded nanoplates while resting on an elastic foundation and under the hygrothermaal environment. This quasi-3D plate theory considers both thickness stretching influences and shear deformation with the variations of displacements in the thickness direction as a parabolic function. Moreover, the stress-free boundary conditions on both sides of the plate are satisfied without using a shear correction factor. This theory includes five independent unknowns with results in only five governing equations. Size effects are obtained via a higher-order nonlocal strain gradient theory of elasticity. A variational approach is adopted to owning the governing equations employing Hamilton's principle. Solving analytically via Fourier series, these equations gives wave frequencies and phase velocities as a function of wave numbers. The validity of the present results is examined by comparing them with those of the known data in the literature. Parametric studies are conducted for material composition, size dependency, two parametric elastic foundation, temperature and moisture differences, and wave number. Some conclusions are drawn from the parametric studies with respect to the wave characteristics.