• Title/Summary/Keyword: Functionally Graded Material(FGM)

Search Result 325, Processing Time 0.025 seconds

Free vibration analysis of a sandwich cylindrical shell with an FG core based on the CUF

  • Foroutan, Kamran;Ahmadi, Habib;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.121-133
    • /
    • 2022
  • An analytical approach for the free vibration behavior of a sandwich cylindrical shell with a functionally graded (FG) core is presented. It is considered that the FG distribution is in the direction of thickness. The material properties are temperature-dependent. The sandwich cylindrical shell with a FG core is considered with two cases. In the first model, i.e., Ceramic-FGM-Metal (CFM), the interior layer of the cylindrical shell is rich metal while the exterior layer is rich ceramic and the FG material is located between two layers and for the second model i.e., Metal-FGM-Ceramic (MFC), the material distribution is in reverse order. This study develops Carrera's Unified Formulation (CUF) to analyze sandwich cylindrical shell with an FG core for the first time. Considering the Principle of Virtual Displacements (PVDs) according to the CUF, the dependent boundary conditions and governing equations are obtained. The coupled governing equations are derived using Galerkin's method. In order to validate the present results, comparisons are made with the available solutions in the previous researches. The effects of different geometrical and material parameters on the free vibration behavior of a sandwich cylindrical shell with an FG core are examined.

Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory

  • Huo, Ruili;Liu, Weiqing;Wu, Peng;Zhou, Ding
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.127-139
    • /
    • 2017
  • In this paper, an exact analytical solution for simply supported sandwich plate which considers the permeation effect of adhesives is presented. The permeation layer is described as functionally graded material (FGM), the elastic modulus of which is assumed to be graded along the thickness following the exponential law. Based on the exact three-dimensional (3-D) elasticity theory, the solution of stresses and displacements for each layer is derived. By means of the recursive matrix method, the solution can be efficiently obtained for plates with many layers. The present solution obtained can be used as a benchmark to access other simplified solutions. The comparison study indicates that the finite element (FE) solution is close to the present one when the FGM layer in the FE model is divided into a series of homogeneous layers. However, the present method is more efficient than the FE method, with which the mesh division and computation are time-consuming. Moreover, the solution based on Kirchhoff-Love plate theory is greatly different from the present solution for thick plates. The influence of the thickness of the permeation layer on the stress and displacement fields of the sandwich plate is discussed in detail. It is indicated that the permeation layer can effectively relieve the discontinuity stress at the interface.

Property Estimation of Functionally Graded Materials Between M2 Tool Steel and Cu Fabricated by Powder Metallurgy (분말야금으로 제작된 M2 공구강과 Cu 간 기능성 경사 복합재의 물성 평가)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.953-958
    • /
    • 2014
  • The use of functionally graded materials (FGMs) may enhance thermal conductivity without reducing the desired strength in many applications such as injection molds embedding conformal cooling channels and cutting tools with heat sinks (or cooling devices). As a fundamental study for cutting tools having FGM heat sinks between M2 tool steel and Cu, six FGM specimens (M2 and Cu powders were premixed such that the relative compositions of M2 and Cu were 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 wt%) were fabricated by powder metallurgy in this study. The cross sections of these specimens were observed by optical microscopy, and then the material properties (such as thermal conductivity, specific heat, and coefficient of thermal expansion) related to heat transfer were measured and analyzed.

A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position

  • Merazi, M.;Hadji, L.;Daouadji, T.H.;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.305-321
    • /
    • 2015
  • In this paper, a new hyperbolic shear deformation plate theory based on neutral surface position is developed for the static analysis of functionally graded plates (FGPs). The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present new hyperbolic shear deformation plate theory and the neutral surface concept, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Static and dynamic behavior of FGM plate using a new first shear deformation plate theory

  • Hadji, Lazreg;Meziane, M. Ait Amar;Abdelhak, Z.;Daouadji, T. Hassaine;Bedia, E.A Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.127-140
    • /
    • 2016
  • In this paper, a new first shear deformation plate theory based on neutral surface position is developed for the static and the free vibration analysis of functionally graded plates (FGPs). Moreover, the number of unknowns of this theory is the least one comparing with the traditional first-order and the other higher order shear deformation theories. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present shear deformation plate theory and the neutral surface concept, the governing equations are derived from the principle of Hamilton. There is no stretching-bending coupling effect in the neutral surface based formulation. Numerical illustrations concern flexural and dynamic behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer

  • Heydari, Abbas
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.397-416
    • /
    • 2020
  • Functionally graded material (FGM) illustrates a novel class of composites that consists of a graded pattern of material composition. FGM is engineered to have a continuously varying spatial composition profile. Current work focused on buckling analysis of beam made of stepwise linear and quadratic graded material in axial direction subjected to axial span-load with piecewise function and rested on shear layer based on classical beam theory. The various boundary and natural conditions including simply supported (S-S), pinned - clamped (P-C), axial hinge - pinned (AH-P), axial hinge - clamped (AH-C), pinned - shear hinge (P-SHH), pinned - shear force released (P-SHR), axial hinge - shear force released (AH-SHR) and axial hinge - shear hinge (AH-SHH) are considered. To the best of the author's knowledge, buckling behavior of this kind of Euler-Bernoulli beams has not been studied yet. The equilibrium differential equation is derived by minimizing total potential energy via variational calculus and solved analytically. The boundary conditions, natural conditions and deformation continuity at concentrated load insertion point are expressed in matrix form and nontrivial solution is employed to calculate first buckling loads and corresponding mode shapes. By increasing truncation order, the relative error reduction and convergence of solution are observed. Fast convergence and good compatibility with various conditions are advantages of the proposed method. A MATLAB code is provided in appendix to employ the numerical procedure based on proposed method.

Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator

  • Rostami, Rasoul;Mohamadimehr, Mehdi;Rahaghi, Mohsen Irani
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.225-237
    • /
    • 2019
  • In this research, the dynamic stability and nonlinear vibration behavior of a smart rotating sandwich cylindrical shell is studied. The core of the structure is a functionally graded material (FGM) which is integrated by functionally graded piezoelectric material (FGPM) layers subjected to electric field. The piezoelectric layers at the inner and outer surfaces used as actuator and sensor, respectively. By applying the energy method and Hamilton's principle, the governing equations of sandwich cylindrical shell derived based on first-order shear deformation theory (FSDT). The Galerkin method is used to discriminate the motion equations and the equations are converted to the form of the ordinary differential equations in terms of time. The perturbation method is employed to find the relation between nonlinear frequency and the amplitude of vibration. The main objective of this research is to determine the nonlinear frequencies and nonlinear vibration control by using sensor and actuator layers. The effects of geometrical parameters, power law index of core, sensor and actuator layers, angular velocity and scale transformation parameter on nonlinear frequency-amplitude response diagram and dynamic stability of sandwich cylindrical shell are investigated. The results of this research can be used to design and vibration control of rotating systems in various industries such as aircraft, biomechanics and automobile manufacturing.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model

  • Salah, Fethi;Boucham, Belhadj;Bourada, Fouad;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.805-822
    • /
    • 2019
  • In this work, a simple four-variable integral plate theory is employed for examining the thermal buckling properties of functionally graded material (FGM) sandwich plates. The proposed kinematics considers integral terms which include the effect of transverse shear deformations. Material characteristics and thermal expansion coefficient of the ceramic-metal FGM sandwich plate faces are supposed to be graded in the thickness direction according to a "simple power-law" variation in terms of the "volume fractions" of the constituents. The central layer is always homogeneous and consists of an isotropic material. The thermal loads are supposed as uniform, linear, and nonlinear temperature rises within the thickness direction. The influences of geometric ratios, gradient index, loading type, and type sandwich plate on the buckling properties are examined and discussed in detail.

Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory

  • Bouiadjra, Rabbab Bachir;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.547-567
    • /
    • 2013
  • Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four unknowns. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is employed here. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The non-linear strain-displacement relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical buckling temperature, which are useful for engineers in design. Numerical results are presented for the present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in comparison to other theories.