• Title/Summary/Keyword: Functionally Graded (FG) plates

Search Result 179, Processing Time 0.025 seconds

On static bending of multilayered carbon nanotube-reinforced composite plates

  • Daikh, Ahmed Amine;Bensaid, Ismail;Bachiri, Attia;Houari, Mohamed Sid Ahmed;Tounsi, Abdelouahed;Merzouki, Tarek
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.137-150
    • /
    • 2020
  • In this paper, the bending behavior of single-walled carbon nanotube-reinforced composite (CNTRC) laminated plates is studied using various shear deformation plate theories. Several types of reinforcement material distributions, a uniform distribution (UD) and three functionally graded distributions (FG), are inspected. A generalized higher-order deformation plate theory is utilized to derive the field equations of the CNTRC laminated plates where an analytical technique based on Navier's series is utilized to solve the static problem for simply-supported boundary conditions. A detailed numerical analysis is carried out to examine the influence of carbon nanotube volume fraction, laminated composite structure, side-to-thickness, and aspect ratios on stresses and deflection of the CNTRC laminated plates.

Theoretical buckling analysis of inhomogeneous plates under various thermal gradients and boundary conditions

  • Laid Lekouara;Belgacem Mamen;Abdelhakim Bouhadra;Abderahmane Menasria;Kouider Halim Benrahou;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This study investigates the theoretical thermal buckling analyses of thick porous rectangular functionally graded (FG) plates with different geometrical boundary conditions resting on a Winkler-Pasternak elastic foundation using a new higher-order shear deformation theory (HSDT). This new theory has only four unknowns and involves indeterminate integral variables in which no shear correction factor is required. The variation of material properties across the plate's thickness is considered continuous and varied following a simple power law as a function of volume fractions of the constituents. The effect of porosity with two different types of distribution is also included. The current formulation considers the Von Karman nonlinearity, and the stability equations are developed using the virtual works principle. The thermal gradients are involved and assumed to change across the FG plate's thickness according to nonlinear, linear, and uniform distributions. The accuracy of the newly proposed theory has been validated by comparing the present results with the results obtained from the previously published theories. The effects of porosity, boundary conditions, foundation parameters, power index, plate aspect ratio, and side-to-thickness ratio on the critical buckling temperature are studied and discussed in detail.

The critical buckling load of reinforced nanocomposite porous plates

  • Guessas, Habib;Zidour, Mohamed;Meradjah, Mustapha;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • By using the first order shear deformation plate theory (FSDT) in the present paper, the effect of porosity on the buckling behavior of carbon nanotube-reinforced composite porous plates has been investigated analytically. Two types of distributions of uniaxially aligned reinforcement material are utilized which uniformly (UD-CNT) and functionally graded (FG-CNT) of plates. The analytical equations of the model are derived and the exact solutions for critical buckling load of such type's plates are obtained. The convergence of the method is demonstrated and the present solutions are numerically validated by comparison with some available solutions in the literature. The central thesis studied and discussed in this paper is the Influence of Various parameters on the buckling of carbon nanotube-reinforced porous plate such as aspect ratios, volume fraction, types of reinforcement, the degree of porosity and plate thickness. On the question of porosity, this study found that there is a great influence of their variation on the critical buckling load. It is revealed that the critical buckling load decreases as increasing coefficients of porosity.

Thermomechanical behavior of Macro and Nano FGM sandwich plates

  • Soumia, Benguediab;Tayeb, Kebir;Fatima Zohra, Kettaf;Ahmed Amine, Daikh;Abdelouahed, Tounsi;Mohamed, Benguediab;Mohamed A., Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.83-106
    • /
    • 2023
  • In this work, the static behavior of FGM macro and nano-plates under thermomechanical loading. Equilibrium equations are determined by using virtual work principle and local and non-local theory. The novelty of the current model is using a new displacement field with four variables and a warping function considering the effect of shear. Through this analysis, the considered sandwich FGM macro and nanoplates are a homogeneous core and P-FGM faces, homogeneous faces and an E-FGM core and finally P-FGM faces and an E-FGM core. The analytical solution is obtained by using Navier method. The model is verified with previous published works by other models and very close results are obtained within maximum 1% deviation. The numerical results are performed to present the influence of the various parameters such as, geometric ratios, material index as well as the scale parameters are investigated. The present model can be applicable for sandwich FG plates used in nuclear, aero-space, marine, civil and mechanical applications.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.

Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT

  • Boutaleb, Sabrina;Benrahou, Kouider Halim;Bakora, Ahmed;Algarni, Ali;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.191-208
    • /
    • 2019
  • In the present work the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosize FG plate. In HSDT a cubic function is employed in terms of thickness coordinate to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton's principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature and a good agreement is observed. Finally, the influence of the various parameters such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness to length ratio on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

Elastic buckling performance of FG porous plates embedded between CNTRC piezoelectric patches based on a novel quasi 3D-HSDT in hygrothermal environment

  • Yujie Zhang;Zhihang Guo;Yimin Gong;Jianzhong Shi;Mohamed Hechmi El Ouni;Farhan Alhosny
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.175-189
    • /
    • 2023
  • The under-evaluation structure includes a functionally graded porous (FGP) core which is confined by two piezoelectric carbon nanotubes reinforced composite (CNTRC) layers. The whole structure rests on the Pasternak foundation. Using quasi-3D hyperbolic shear deformation theory, governing equations of a sandwich plate are driven. Moreover, face sheets are subjected to the electric field and the whole model is under thermal loading. The properties of all layers alter continuously along with thickness direction due to the CNTs and pores distributions. By conducting the current study, the results emerged in detail to assess the effects of different parameters on buckling of structure. As instance, it is revealed that highest and lowest critical buckling load and consequently stiffness, is due to the V-A and A-V CNTs dispersion type, respectively. Furthermore, it is revealed that by porosity coefficient enhancement, critical buckling load and consequently, stiffness reduces dramatically. Current paper results can be used in various high-tech industries as aerospace factories.

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

Thermal buckling Analysis of functionally graded plates using trigonometric shear deformation theory for temperature-dependent material properties

  • Lazreg Hadji;Royal Madan;Hassen Ait Atmane;Fabrice Bernard;Nafissa Zouatnia;Abdelkader Safa
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.539-549
    • /
    • 2024
  • In this paper, thermal buckling analysis was conducted using trigonometric shear deformation theory, which employs only four unknowns instead of five. This present theory is variationally consistent, and accounts for a trigonometric variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The grading is provided along the thickness of the plate as per power law volume fraction variation of metal-matrix ceramic reinforced composite. The non-linear governing equation problem was solved for simply supported boundary conditions. Three types of thermal loads are assumed in this work: uniform, linear and non-linear distribution through-the-thickness. It is well known that material properties change with temperature variations and so the analysis was performed for both the cases: temperature-dependent (TD) and temperature-independent (TID) material properties. The impact on thermal buckling for both linear and non-linear temperature variation was considered. The results were validated for the TID case with other theories and were found to be in good agreement. Furthermore, a comprehensive analysis was performed to study the impact of grading indices and geometrical parameters, such as aspect ratio (a/b) and side-to-thickness ratio (a/h), on the thermal buckling of the FG plate.

A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach

  • Chikr, Sara Chelahi;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.471-487
    • /
    • 2020
  • In this work, the buckling analysis of material sandwich plates based on a two-parameter elastic foundation under various boundary conditions is investigated on the basis of a new theory of refined trigonometric shear deformation. This theory includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Applying the principle of virtual displacements, the governing equations and boundary conditions are obtained. To solve the buckling problem for different boundary conditions, Galerkin's approach is utilized for symmetric EGM sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of plate aspect ratio, elastic foundation coefficients, ratio, side-to-thickness ratio and boundary conditions on the buckling response of FGM sandwich plates. A good agreement between the results obtained and the available solutions of existing shear deformation theories that have a greater number of unknowns proves to demonstrate the precision of the proposed theory.