• Title/Summary/Keyword: Functionalized SBA-15

Search Result 12, Processing Time 0.023 seconds

Synthesis of Poly(methacrylic acid)-functionalized SBA-15 and its Adsorption of Phenol in Aqueous Media

  • Vo, Vien;Kim, Hee-Jin;Kim, Ha-Yeong;Kim, Youngmee;Kim, Sung Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3570-3576
    • /
    • 2013
  • Poly(methacrylic acid)-functionalized SBA-15 silicas (denoted as P-x-PMA/SBA-15 where x is molar ratio of TSPM/(TEOS+TSPM) in percentage in the initial mixture) were synthesized by co-condensation of tetraethoxysilane and varying contents of 3-(trimethoxysilyl)propyl methacrylate in acidic medium with the block copolymer Pluronic 123 as a structure directing agent and then polymerization by methacrylic acid in the presence of ammonium persulfate as an initiator. The functionalized materials were characterized by PXRD, TEM, SEM, IR, and $N_2$ adsorption-desorption at 77 K. The investigation of phenol adsorption in aqueous solution on the materials showed that the poly(methacrylic acid)-functionalized mesoporous silicas possess strong adsorption ability for phenol with interaction of various kinds of hydrogen bonds. The adsorption data were fitted to Langmuir isotherms and the maximum adsorption capacity of the three functionalized materials P-5-PMA/SBA-15, P-10-PMA/SBA-15, and P-15-PMA/SBA-15 to be 129.37 mg/g, 187.97 mg/g, and 78.43 mg/g, respectively, were obtained. The effect of the pH on phenol adsorption was studied.

Surface modified mesoporous silica (SBA-15) for phosphate adsorbents in water (표면 개질된 메조기공실리카를 이용한 수중의 인 제거)

  • Lee, Seung-Yeon;Choi, Jae-Woo;Lee, Sang-Hyup;Lee, Hae-Goon;Lee, Ki-Bong;Hong, Seok-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.719-724
    • /
    • 2011
  • The excessive phosphate in water causes eutrophication which destroys water environment. In this study, mesoporous silica was synthesized and several functional groups were attached on it. Samples were tested to identify the ability to remove phosphate. The structures of synthesized materials were analyzed by X-ray diffractions (XRD), Fourier transform-infrared (FT-IR) and surface area analysis, Brunauer-Emmett-Teller (BET). To determine the maximum phosphate adsorption capacities and sorption rate, the equilibrium test and kinetic test was conducted. Among functionalized SBA-15 samples, pure SBA-15 didn't adsorb phosphate but Al-SBA-15 and Ti-SBA-15 showed good performances to remove phosphate. The maximum phosphate adsorption capacity of Al-SBA-15 was efficient compared to other adsorbents.

Immobilization of Metallocene inside the Aminosilane-Functionalized Nanopore of SBA-15 and MCM-41 and Its Ethylene Polymerization (아미노실란 기능화된 MCM-41과 SBA-15 세공 내 메탈로센 담지 및 에틸렌 중합)

  • Celedonio, Jhulimar;Lee, Jeong Suk;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.396-400
    • /
    • 2014
  • The pore surface of mesoporous materials, SBA-15 and MCM-41 were functionalized with organosilanes, 3-aminopropyltrimethoxysilane (1NS) and N-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS) via grafting method. $(n-BuCp)_2ZrCl_2$ and methylaluminoxane (MAO) were impregnated on the surface-functionalized mesoporous materials for the application to ethylene polymerization. In the case of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ supported Zr and Al contents decreased as grafted 2NS content increased. However, in the case of MCM-41/2NS/$(n-BuCp)_2ZrCl_2$ supported Al content decreased, but Zr content increased as grafted 2NS content increased. The polymerization activity of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ increased as the amount of grafted 2NS increased. Increase in the amount of grafted 2NS should caused decrease in pore volume and diameter. Consequently, it decreased the amount of supported metallocene and MAO in general. However, the smaller pore-sized MCM-41 could have lower supported MAO content due to its large molecular size in case that MCM-41 was surface-functionalized with 2NS. Therefore, the supported metallocene content could increase and its polymerization activity was higher than that of SBA-15.

Carbon-13 CP MAS NMR Study on Structures of Octadecyl Chains Influenced by Co-Presence of 3-Aminopropyl Chains on SBA-15

  • Han, Oc-Hee;Bae, Yoon-Kyung;Jeong, Soon-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.405-407
    • /
    • 2008
  • Functionalized SAB-15 samples by octadecyltrimethoxysilane (OTC) were studied by 13C magic angle spinning (MAS) cross polarization (CP) nuclear magnetic resonance (NMR) spectroscopy. In the SBA-15 sample fully functionalized by 3-aminopropyltrimethoxysilane (APS) and OTC in 1:1 molar ratio, octadecyl chains were observed to have, on average, more trans conformation than those in the SBA-15 samples fully modified by OTC only. Our results confirm that long chain molecules tend to organize themselves better in the co-presence of short chain molecules on the surface of mesoporous materials by packing of the different length chains in an interdigitized fashion even when the short chains are long enough to have three carbons and a functional group at the ends. In addition, our results indicate that solid-state 13C CP MAS NMR spectroscopy is a simple and non-destructive method to probe the molecular structures of the domains composed of long alkyl chains.

Photochromic Spiropyran-Functionalized Organic-Inorganic Hybrid Mesoporous Silica for Optochemical Gas Sensing (광화학적 가스 센싱을 위한 광변색 스피로피란 개질된 유기-무기 하이브리드 메조포러스 실리카)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.17 no.4
    • /
    • pp.141-148
    • /
    • 2016
  • In this work, mesoporous silica (SBA-15) was synthesized via self-assembly process using triblock copolymer ($PEO_{20}PPO_{70}PEO_{20}$, P123) as template and tetraethyl orthosilicate (TEOS) as silica source under acidic condition. SBA-15 have high surface area ($704m^2g^{-1}$) and uniform pore size (8.4 nm) with well-ordered hexagonal mesostructure. Spiropyran-functionalized SBA-15 (Spiropyran-SBA-15) was synthesized via post-synthesis process using 3-(triethoxysilyl)propyl isocyanate (TESPI) and 1-(2-Hydroxyethyl)-3,3-dimethy-lindolino-6'-nitrobenzopyrylo-spiran (HDINS). Spiropyran-SBA-15 was produced with hexagonal array of mesopores without damage of mesostructre. Surface area and pore size of Spiropyran-SBA-15 were $651m^2g^{-1}$ and 8.0 nm, respectively. Optochemical properties of Spiropyran-SBA-15 was studied with chemical vapors such as EtOH, THF, $CHCl_3$, Acetone and HCl. Main peaks of photofluorescence of Spiropyran-SBA-15 exhibited blue shift in the range of 603.4~592.1 nm after exposure under EtOH, THF, $CHCl_3$, and Acetone vapors. Normalized peak intensities decreased in the range of 0.8~0.3. The main peak of photofluorescence of Spiropyran-SBA-15 showed significant blue shift of 592.1 nm after exposure under HCl vapor, while normalized peak intensity decreased to 0.1.

Immobilization Metallocene Inside Surface-functionalized Nanopore of Micelle-Templated Silica and its Ethylene Polymerization (표면 기능화된 Micelle-Templated Silica 나노세공 내 메탈로센 담지 및 에틸렌 중합)

  • Lee, Jeong-Suk;Yim, Jin-Heong;Ko, Young-Soo
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.111-116
    • /
    • 2012
  • A functionalization of mesoporous materials with organosilane was carried out via a post-synthesis grafting method and $(n-BuCp)_2ZrCl_2$/methylaluminoxane (MAO) as subsequently immobilized on the functionalized mesoporous materials for ethylene polymerization. Organosilanes having amine, cyano or imidazoline group such as $N$-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS), 4-(triethoxysilyl)butyronitrile (1NCy), 1-(3-triethoxysilylpropyl)-2-imidazoline (2NIm) were used for the surface functionalization of mesoporous materials. In the SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ catalyst preparation, the amount of MAO in feed increased with an decrease in the Zr content of the supported catalyst, and Al content in the supported catalyst increased. The ethylene homopolymerization activity of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ dramatically increased as the amount of MAO in feed increased. Furthermore, when the immobilization time was 6 hrs, SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ showed the highest activity. The activities of supported 2NS-, 1NCy-, 2NIm-functionalized catalysts decreased in the following order, SBA-15/2NS/ > SBA-15/2NIm/ > SBA-15/1NCy/$(n-BuCp)_2ZrCl_2$. 2NS and 2NIm which have two amine groups per silane molecule were shown to interact with $(n-BuCp)_2ZrCl_2$ strongly compared to 1NCy which has one amine group. Thus, the activities increased with an increase in the nitrogen and the Zr content of the supported catalysts.

Influence of Functionalization of Silica with Ionic Liquid on Ethylene Polymerization Behavior of Supported Metallocene (실리카의 이온성 액체 기능화가 메탈로센 담지촉매의 에틸렌 중합 거동에 미치는 영향)

  • Lee, Jeong Suk;Lee, Chang Il;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.86-91
    • /
    • 2016
  • Three amorphous silicas and SBA-15 were employed as supports, which were capable of confining ionic liquid (IL) and metallocene in the nanopore. Ionic liquid functionalized silica was prepared by the interaction between the chloride anions of 1,3-bis(cyanomethyl)imidazolium chloride and the surface OH groups. Metallocene and methylaluminoxane (MAO) were subsequently immobilized on the ionic liquid functionalized silica for ethylene polymerization. The metallocene supported on ionic liquid functionalized XPO-2412 and XPO-2410 having a larger pore diameter compared to SBA-15 showed higher activity than that of using supported catalyst without ionic liquid functionalization. However, the activity of metallocene supported on SBA-15 decreased after ionic liquid functionalization, suggesting that the diffusion of ethylene monomer and cocatalyst to the active site of nanopore was restricted during ethylene polymerization. This could be resulted from significant reduction of the pore diameter due to the immobilization of ionic liquid and $(n-BuCp)_2ZrCl_2$ and MAO. The effect on polymerization activity in accordance with the concentration of hydroxyl groups on the surface was also investigated. The polymerization activity increased as the concentration of hydroxyl groups on amorphous silica increased. The polymerization activities of metallocene supported on silica showed the similar trend after ionic liquid functionalization.

Simultaneous Determination of Cd2+, Pb2+, Cu2+ and Hg2+ at a Carbon Paste Electrode Modified with Ionic Liquid-functionalized Ordered Mesoporous Silica

  • Zhang, Penghui;Dong, Sheying;Gu, Guangzhe;Huang, Tinglin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2949-2954
    • /
    • 2010
  • Ionic liquid-functionalized ordered mesoporous silica SBA-15 modified carbon paste electrode (CISPE) was fabricated and its electrochemical performance was investigated by cyclic voltammetry, electrochemical impedance spectra. The electrochemical behavior of $Cd^{2+}$, $Pb^{2+}$, $Cu^{2+}$ and $Hg^{2+}$ at CISPE was studied by differential pulse anodic stripping voltammetry (DPASV). Compared with carbon paste electrode, the stripping peak currents had a significant increase at CISPE. Under the optimized conditions, the detection limits were $8.0{\times}10^{-8}\;M$ ($Cd^{2+}$), $4.0{\times}10^{-8}\;M$ ($Pb^{2+}$), $6.0{\times}10^{-8}\;M$ ($Cu^{2+}$), $1.0{\times}10^{-8}\;M$ ($Hg^{2+}$), respectively. Furthermore, the present method was applied to the determination of $Cd^{2+}$, $Pb^{2+}$, $Cu^{2+}$ and $Hg^{2+}$ in water samples and people hair sample.

Rare-Earth Metal Complex-Functionalized Mesoporous Silica for a Potential UV Sensor (잠재적인 UV 센서를 위한 희토류 금속착물이 기능화된 메조다공성 실리카)

  • Sung Soo Park;Mi-Ra Kim;Weontae Oh;Yedam Kim;Yeeun Lee;Youngeon Lee;Kangbeom Ha;Dojun Jung
    • Journal of Adhesion and Interface
    • /
    • v.24 no.4
    • /
    • pp.136-142
    • /
    • 2023
  • In this study, TEOS was used as a silica source, and a triblock copolymer (P123) was used as a template to produce mesoporous silica with a well-ordered hexagonal mesopore array through a self-assembly method and hydrothermal process under acidic condition. (Surfactant-extracted SBA-15). Surfactant-extracted SBA-15 showed the particle shape of a short rod with a size of approximately 980 nm. The surface area and pore diameter were 730 m2g-1 and 70.8 Å, respectively. Meanwhile, aminosilane (3-aminopropyltriethoxysilane, APTES) was grafted into the mesopores using a post-synthesis method. Mesoporous silica (APTES-SBA-15) modified with aminosilane had a well-ordered pore structure (p6mm) and well-maintained the particle shape of short rods. The surface area and pore diameter of APTES-SBA-15 decreased to 350 m2g-1 and 60.7 Å, respectively. APTES-modified mesoporous silica was treated with a solution of rare earth metal ions (Eu3+, Tb3+) to synthesize a mesoporous silica material in which rare earth metal complexes were introduced into the mesopores. (Eu/APTES-SBA-15, Tb/APTES-SBA-15) These materials exhibited characteristic photoluminescence spectra by λex=250 nm. (5D47F5 (543.5 nm), 5D47F4 (583.5 nm), 5D47F3 (620.2 nm) transitions for Tb/APTES-SBA-15; 5D07F0 (577.7 nm), 5D07F1 (592.0 nm), 5D07F2 (614.9 nm), 5D07F3 (650.3 nm) and 5D07F4 (698.5 nm) transitions for Eu/APTES-SBA-15)

Study on CMPO (Carbamoylphosphate) derivative functionalized ordered mesoporous silicates for selective removal of lanthanide (희토류 원소의 분리를 위한 표면 개질 된 메조 다공성 실리케이트의 개발에 관한 연구)

  • Kwon, Bob Jin;Jung, Hyun;Kim, Jong Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.291-298
    • /
    • 2012
  • Carbamoylphosphate (CMPO) [CMPO analogue; 2-(diphenylphosphoryl)-N-(3-(triethoxysilyl)propyl)acetamide]silane, as a functional self-assembled molecules, grafted mesoporous silicates were prepared by simple hydrolysis and condensation reaction. Pore sized tailored mesoporous silicates such as MCM-41, SBA-15, or amorphous silica nanoparticles were adopted as host materials. The surface area of ordered mesoporous silicates was ranged from 680 $m^2/g$ to 1310 $m^2/g$ with different pore diameters that estimated to be ca. 2.3~9.1 nm by BJH method. Among the OMMs host materials, SBA-15(II) has higher loading ratio (~35 wt%) of CMPO derivative than other OMMs. Accessibility to CMPO silane functional groups in the surface of mesoporous silicas was studied by lanthanide ions sorption experiments. All of the CMPO modified OMMs favors the smaller Eu(III) and Nd(III) cations than La(III) for relative larger ionic radius.