• 제목/요약/키워드: Functional electrical stimulation (FES)

검색결과 109건 처리시간 0.024초

가속도계를 이용한 마비환자의 보행이벤트 검출 (Gait-Event Detection using an Accelerometer for the Paralyzed Patients)

  • 공세진;김철승;문기욱;엄광문;탁계래;김경섭;이정환;이영희
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.990-992
    • /
    • 2007
  • The purpose of this study is to develop a practical gait-event detection system which is necessary for the FES (functional electrical stimulation) control of locomotion in paralyzed patients. The system is comprised of a sensor board and an event recognition algorithm. We focused on the practicality improvement of the system through 1) using accelerometer to get the angle of shank and dispensing with the foot-switches having limitation in indoor or barefoot usage and 2) using a rule-base instead of threshold to determine the heel-off/heel-strike events corresponding the stimulation on/off timing. The sensor signals are transmitted through RF communication and gait-events was detected using the peaks in shank angle. The system could detect two critical gait-events in all five paralyzed patients. The standard deviation of the gait events time from the peaks were smaller when 1.5Hz cutoff frequency was used in the derivation of the shank angle from the acceleration signals.

동작관찰 신체훈련을 병행한 기능적 전기자극치료가 뇌졸중환자의 균형과 보행에 미치는 영향 (Effects of A Combined Functional Electrical Stimulation with Action Observation Training for Balance and Gait Performance in Stroke Patients)

  • 강권영;김태윤
    • 대한물리의학회지
    • /
    • 제11권2호
    • /
    • pp.93-102
    • /
    • 2016
  • PURPOSE: The purpose of this study is to evaluate the functional effects of action observation plus functional electrical stimulation (FES) treatment on the weight distribution indexes (heel and toe; right and left), stability indexes, gait velocities, and stride lengths of stroke patients. METHODS: The subjects, who were all more than six months post stroke, were randomly divided into two groups of ten each: an experimental group and a control group. TETRAX (Tetrax Interactive Balance System) and GAITRite (GAITRite$^{TM}$ computerized gait analysis system) were measured at baseline, six weeks after treatment. Participants in both the groups received functional electrical stimulation treatment, but the experimental group was provided with additional action observation. Independent t-tests were used to compare the differences between the groups, and repeated measured two-way ANOVA was used to compare the interaction between the groups. RESULTS: The result of the interactions between the groups and the periods showed significant increases in the weight distribution indexes (heel and toe; right and left), stability indexes, gait velocities and stride lengths (p<0.05). However, a comparison between the groups showed no significance in the weight distribution indexes (heel and toe), stability indexes, and stride lengths (p>0.05). CONCLUSION: Action observation plus functional electrical stimulation treatment should be considered as a therapeutic method for physical therapy for stroke patients to improve the weight distribution indexes, stability indexes, gait velocities, and stride lengths.

기능적 전기자극을 위한 근골격계 모델 개발 - 무릎관절에서의 근골격계 모델 특성치의 비침습적 추정 - (Development of a Musculoskeletal Model for Functional Electrical Stimulation - Noninvasive Estimation of Musculoskeletal Model Parameters at Knee Joint -)

  • 엄광문
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권3호
    • /
    • pp.293-301
    • /
    • 2001
  • A patient-specific musculoskeletal model, whose parameters can be identified noninvasively, was developed for the automatic generation of patient-specific stimulation pattern in FES. The musculotendon system was modeled as a torque-generator and all the passive systems of the musculotendon working at the same joint were included in the skeletal model. Through this, it became possible that the whole model to be identified by using the experimental joint torque or the joint angle trajectories. The model parameters were grouped as recruitment of muscle fibers, passive skeletal system, static and dynamic musculotendon systems, which were identified later in sequence. The parameters in each group were successfully estimated and the maximum normalized RMS errors in all the estimation process was 8%. The model predictions with estimated parameter values were in a good agreement with the experimental results for the sinusoidal, triangular and sawlike stimulation, where the normalized RMS error was less than 17%, Above results show that the suggested musculoskeletal model and its parameter estimation method is reliable.

  • PDF

슬관절 근육만을 이용한 FES 싸이클링 : 컴퓨터 시뮬레이션 연구 (Implementation of FES Cycling using only Knee Muscles : A Computer Simulation Study)

  • 엄광문;김철승;하세카즈노리
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.171-179
    • /
    • 2004
  • The purpose of this study is to generate cycling motion for FES (functional electrical stimulation) using knee muscles only. We investigated the possibility by simulation. The musculoskeletal model used in this simulation was simplified as 5-rigid links and 2 muscles (knee extensor and flexor). For the improvement of the present feedforward control in FES, we included feedback path in the control system. The control system was developed based on the biological neuronal system and was represented by three sub-systems. The first is a higher neuronal system that generates the motion command for each joint. The second is the lower neuronal system that divides the motion command to each muscle. And the third is a sensory feedback system corresponding to the somatic sensory system. Control system parameters were adjusted by a genetic algorithm (GA) based on the natural selection theory. GA searched the better parameters in terms of the cost function where the energy consumption, muscle force smoothness, and the cycling speed of each parameter set (individual) are evaluated. As a result, cycling was implemented using knee muscles only. The proposed control system based on the nervous system model worked well even with disturbances.

FES보행중의 피드백제어를 위한 관절 각도계측 시스템 개발 (Development of Joint Angle Measurement System for the Feedback Control in FES Locomotion)

  • 문기욱;김철승;김지원;이재호;권유리;강동원;강곤;김요한;엄광문
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.203-209
    • /
    • 2009
  • The purpose of this study is to develop a minimally constraint joint angle measurement system for the feedback control of FES (functional electrical stimulation) locomotion. Feedback control is desirable for the efficient FES locomotion, however, the simple on-off control schemes are mainly used in clinic because the currently available angle measurement systems are heavily constraint or cosmetically poor. We designed a new angle measurement system consisting of a magnet and magnetic sensors located below and above the ankle joint, respectively, in the rear side of ipsilateral leg. Two magnetic sensors are arranged so that the sensing axes are perpendicular each other. Multiple positions of sensors attachment on the shank part of the ankle joint model and also human ankle joint were selected and the accuracy of the measured angle at each position was investigated. The reference ankle joint angle was measured by potentiometer and motion capture system. The ankle joint angle was determined from the fitting curve of the reference angle and magnetic flux density relationship. The errors of the measured angle were calculated at each sensor position for the ankle range of motion (ROM) $-20{\sim}15$ degrees (dorsiflexion as positive) which covers the ankle ROM of both stroke patients and normal subjects during locomotion. The error was the smallest with the sensor at the position 1 which was the nearest position to the ankle joint. In case of human experiment, the RMS (root mean square) errors were $0.51{\pm}1.78(0.31{\sim}0.64)$ degrees and the maximum errors were $1.19{\pm}0.46(0.68{\sim}1.58)$ degrees. The proposed system is less constraint and cosmetically better than the existing angle measurement system because the wires are not needed.

일측 마비환자의 전기자극에 의한 보행기능의 회복 (ELECTRICAL STIMULATION FOR THE RESTORATION OF GAIT FUNCTION IN HEMIPLEGIC PATIENTS)

  • 정동명;박병림;김상수;이창훈;홍승홍
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1992년도 춘계학술대회
    • /
    • pp.203-208
    • /
    • 1992
  • In order to restore the gait function by functional electrical stimulation(FES) in hemiplegic patients, an electrical stimulator and foot sensor were developed on the basis of optimal parameters which resulted from animal experiments. Physical properties of the soleus muscle were quite different from those of themedial gastrocnemius muscle, that is, the former had a characteristic or slow muscle and the letter had a characteristic of fast muscle in rats. Optimal parameters for electrical stimulation were 0.2ms of pulse width and 20Hz of frequency in the soleus muscle and 0.3ms, 40Hz in the medial gastrocnemius muscle. Amplitude modulated electrical stimulator with -15V of maximal output was made and automatic on-off time if the stimulator was 5 seconds. The foot sensor composed of 3 sensors in 3 pressure points of the foot was made in order to control the gai t function by closed loop feedback system. The gait function was improved by using the stimulator and foot sensor in peroneal palsy. These results suggest that the electrical stimulator with closed loop feedback system may restore the gait function in hemiplegic patients.

  • PDF

Effects of Stimulation Conditions and Waveforms on Muscle Contractile Characteristics

  • Song Tongjin;Khang Gon
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권2호
    • /
    • pp.111-116
    • /
    • 2005
  • This study was designed to apply the stimulation system developed in our laboratory to investigate how the stimulation conditions affect the muscle contractile characteristics in the isometric condition as well as during the FES standing/walking. Four paraplegic and ten healthy subjects participated in this study, and their knee extensors were voluntary contracted or electrically stimulated to measure the muscle force and the fatigue index for different waveforms of the pulse train. We also investigated different combinations of the electrode positions during standing/walking. It was confirmed that continuous and high-frequency stimulation causes faster fatigue than intermittent and low-frequency stimulation. Fatigue resistance was higher around the optimal muscle length than at a stretched position in healthy subjects, whereas the opposite was observed in paralyzed subjects. The paired t-test results with the level of significance at 0.01 indicated that the sinusoidal waveform generated the largest torque among the four typical waveforms. Although statistically not very significant, the sinusoidal waveform also generated, in general, the highest fatigue resistance at an intensity level below the supramaximal stimulation. One of the paraplegic subject who participated in the standing/walking program can now stand up for 1 minute and 50 seconds with the knee extensors, and walk for about 5 minutes at the speed of 12m/sec.

FES와 과제지향 훈련이 뇌졸중 환자의 복부근 두께와 균형에 미치는 영향 (The Effect of Task Oriented Exercise and Abdominal Muscle Contraction using FES on Abdominal Muscle Thickness and Balance of Stroke Patients)

  • 홍종윤;이효정
    • 정형스포츠물리치료학회지
    • /
    • 제14권2호
    • /
    • pp.117-126
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effect of task-oriented exercise and abdominal muscle contraction using functional electrical stimulation (FES) on abdominal muscle thickness and balance of stroke patients. Methods: Ten stroke patients who met the selection criteria were assigned randomly into two groups of five. One group received FES therapy before task-oriented training (experimental group), while the other group received a FES placebo before task-oriented training (control group). The Mann-Whitney U test was used to compare the groups, and the Wilcoxon Signed-ranks test was used to compare differences between the groups before and after intervention. The Mann-Whitney U test was used to compare the rate changes of each item before and after intervention, between the two groups. Results: In the rectus abdominalis and external oblique muscle thickness tests that used ultrasound, there was a statistically significant difference in the experimental group (p<.05),but no significant difference in the control group (p>.05). There was also a significant difference between the groups (p<.05). In the Balance test that used the Berg Balance Scale (BBS) and timed up and go test (TUG), there was a statistically significant difference in the experimental and control groups (p<.05), but there was no significant difference between the groups (p>.05). Conclusions: FES therapy before task-oriented training increases the thickness of abdominal muscles and improves balance abilities.

하반신 마비 환자의 보행을 위한 근전도 제어 FES 시스템 구현에 관한 연구 (A Study of EMG-Controlled FES System Implementation for primitive-walking of Paraplegics)

  • 김근섭;김규학;김종원;홍완희;김성환
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1991년도 춘계학술대회
    • /
    • pp.34-38
    • /
    • 1991
  • This paper describes and discusses the employment of EMG pattern analysis to provide upper-motor-neuron paraplegics with patient-responsive control of FES (functional electrical stimulation) for the purpose of walker-supported walking. The use of above - lesion EMG signals as a solution to the control problem is considered. The AR (autoregressive) parameters are identified by Kalman filter algorithm using DSP chip and classified by fuzzy theory. The control and stimuli part of the below-lesion are based on microprocessor(8031). The designed stimulator is a 4-channel version. The experiments described above have only attempted to discriminate between standing function and sit-down function. A further advantage of the this system is applied for motor rehabilitation of social readaption of paralyzed humans.

  • PDF

편마비환자를 위한 휴대용 자극시스템 설계에 관한 연구 (A Study on the design of functional electrical stimulation system for hemiplegic patients)

  • 김낙환;박종길;권장우;장영건;홍승홍
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.99-102
    • /
    • 1996
  • The ultimate object of FES is on the recovering function of body and shape demaged from desease or injury to original state. On this study, object is recovering of gait function of the disabled who, especially, have gait disturbance. Paralyzed muscle from the central nerve disable, if peripheral nerves which be in the lower part of the harmed are activated, muscle contraction is possible. The traumatic trouble, peripheral nerves aren't connected to a central nerve but origin of peripheral nerve cells which are in the lower part of the harmed are alive, react on stimulation. We design 4-channel stimulator, being based on standard stimuli pattern. stimulator is manufactured with compact size and light weight to portable.

  • PDF