• Title/Summary/Keyword: Functional dopant

Search Result 20, Processing Time 0.036 seconds

Dopant activation by using CW laser for LTPS processing

  • Kim, Ki-Hyung;Kim, Eun-Hyun;Ku, Yu-Mi;Park, Seong-Jin;Uchiike, Heiju;Kim, Chae-Ok;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.310-313
    • /
    • 2005
  • CW laser dopant activation (CLDA) is suggested as an alternative to conventional thermal annealing. The sheet resistance of the ion doped poly-Si after CLDA is sufficiently low compared to the value measured after thermal annealing. The surface damage due to ion doping on the poly-Si can be recovered while CW laser scan for dopant activation. Therefore, the CLDA can be applied to LTPS processing.

  • PDF

Electronic State of ZnO doped with Al, Ga and In, Calculated by Density Functional Theory (범함수궤도법을 이용하여 계산한 Al, Ga, In이 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.218-221
    • /
    • 2004
  • The electronic state of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, was calculated using the density functional theory. In this study, the program used for the calculation on theoretical structures of ZnO and doped ZnO was Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The detail of electronic structure was obtained by the describe variational $X{\alpha}(DV-X{\alpha})$(DV-Xa) method, which is a sort of molecular orbital full potential method. The optimized crystal structures obtained by calculations were compared to the measured structure. The density of state and energy levels of dopant elements was shown and discussed in association with properties.

  • PDF

Electronic State of ZnO Doped with Elements of IIIB family, Calculated by Density functional Theory (범밀도함수법을 이용하여 계산한 IIIB족 원소가 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Min, Bok-Ki;Kim, In-Sung;Song, Jae-Sung;Kim, Yang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.589-593
    • /
    • 2005
  • The electronic states of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, were calculated using the density functional theory. In this study, the calculation was performed by two Programs; the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method; Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The fundamental mixed orbital structure in each energy level near the Fermi level was investigated with simple model using DV-Xa. The optimized crystal structures calculated by VASP were compared to the measured structures. The density of state and the energy levels of dopant elements were shown and discussed in association with properties.

Effect of Particle Size and Doping on the Electrochemical Characteristics of Ca-doped LiCoO2 Cathodes

  • Hasan, Fuead;Kim, Jinhong;Song, Heewon;Lee, Seon Hwa;Sung, Jong Hun;Kim, Jisu;Yoo, Hyun Deog
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.352-360
    • /
    • 2020
  • Lithium cobalt oxide (LiCoO2, LCO) has been widely used as a cathode material for Li-ion batteries (LIBs) owing to its excellent electrochemical performance and highly reproducible synthesis even with mass production. To improve the energy density of the LIBs for their deployment in electro-mobility, the full capacity and voltage of the cathode materials need to exploited, especially by operating them at a higher voltage. Herein, we doped LCO with divalent calcium-ion (Ca2+) to stabilize its layered structure during the batteries' operation. The Ca-doped LCO was synthesized by two different routes, namely solid-state and co-precipitation methods, which led to different average particle sizes and levels of dopant's homogeneity. Of these two, the solid-state synthesis resulted in smaller particles with a better homogeneity of the dopant, which led to better electrochemical performance, specifically when operated at a high voltage of 4.5 V. Electrochemical simulations based on a single particle model provided theoretical corroboration for the positive effects of the reduced particle size on the higher rate capability.

Conducting Polymers with Functional Dopants and their Applications in Energy, Environmental Technology, and Nanotechnology

  • Kim, Sung Yeol;Song, Hyun-Kon
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.12-21
    • /
    • 2015
  • Development of novel conducting polymers (CPs) is expected to facilitate the advancement of functional materials used for energy, environmental, and nanotechnology. Recent research efforts are focused on doping CPs with functional dopants to enhance their performance or add additional functions that are not inherent in CPs. This review surveys literatures about the doped CPs focusing on the roles of functional dopants, unlike other reviews focusing on the development of new conducting polymer backbones. The functional dopants presented in this review include redox active molecules, carbon nanomaterials, biopolymers, and chelating molecules. Depending on the dopants and their physicochemical properties, the doped CPs can be used for a variety of applications such as polymer batteries, membranes for waste water treatment, and chemical sensors. A major challenge of the CPs is presented and the ways to overcome the challenge is also suggested for the future development of stable, high performance CPs.

알칼리 금속을 도핑한 BaSi2의 p-type 특성 분석

  • Im, Jae-Hu;Hong, Chang-Ho;Lee, Tae-Hun;Yun, Yong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.392-397
    • /
    • 2017
  • 알칼리 금속을 도핑한 $BaSi_2$의 p-type 특성에 대하여 이해하기 위하여 density functional theory(DFT) 방법을 바탕으로 하는 결함 계산을 진행하였다. 우선 $BaSi_2$의 Si, Ba vacancies에 대해 계산을 진행하여서 도핑을 하지 않았을 때의 특성에 대해 이해해 보았다. 다음으로 알칼리 금속을 도핑한 구조의 p-type 특성과 비교 분석을 진행하기 위해서 잘 알려진 p-type dopants인 Al, In, Ag을 치환형으로 도핑한 구조의 특성에 대해 분석해 보았다. 마지막으로 알칼리 금속을 도핑하였을 때의 p-type 특성에 대해 계산해 보았고, K을 도핑하였을 때 잘 알려진 p-type dopants보다 더 나은 p-type 특성을 가질 수 있음을 보였다.

  • PDF

Transparent Electrode based on Poly(3,4-ethylenedioxythiophene)

  • Song, Keuk-Ryoul;Min, Hye-Kyoung;Oh, Eung-Ju;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.578-580
    • /
    • 2003
  • PEDOT [poly(3,4-ethylenedioxythiophene)] powder soluble in common organic solvent were synthesized by oxidative polymerization of EDOT (3,4-ethylene dioxythiophene) monomer using functional dopant, DEHSNa [sodium di(2-ethylhexyl)sulfosuccinate]. Transparent electrodes were made by spin casting of PEDOT/organic solvents on substrates. The electrode showed the transmittance < 90% in visible region and the surface resistance of> ${\sim}10^3\;ohm/{\square}$, respectively.

  • PDF

Preparation and Characteristics of Polypyrrole/sulfonated Poly(2,6-dimethyl-1,4-phenylene oxide) Composite Electrode (폴리피롤/설폰화 폴리(2,6-디메틸-1,4-페닐렌 옥사이드) 복합전극의 제조 및 특성)

  • Huh, Yang-Il;Jung, Hong-Ryun;Lee, Wan-Jin
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.74-79
    • /
    • 2007
  • Polypyrrole (PPy) was made by an emulsion polymerization using iron (III) chloride ($FeCl_3$) as an initiator and dodecyl benzene sulfuric acid (DBSA) as an emulsifier and dopant. Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) was sulfonated by chlorosulfonic acid (CSA). The cathode was composed of $PPy^+DBS^-$ complex, conductor powder, and PPO or sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) (SPPO) as a binder or dopant. The charge-discharge performance of $PPy^+DBS^-/SPPO$ cathode was increased as the extent of about 50%, than $PPy^+DBS^-/PPO$. This is because SPPO played a role as a binder as well as a dopant. In addition, sulfonation brings out the increase of miscibility between PPy and SPPO, and the increase of contact area between cathode and electrolyte.

Achieving Robust N-type Nitrogen-doped Graphene Via a Binary-doping Approach

  • Kim, Hyo Seok;Kim, Han Seul;Kim, Seong Sik;Kim, Yong Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.192.2-192.2
    • /
    • 2014
  • Among various dopant candidates, nitrogen (N) atoms are considered as the most effective dopants to improve the diverse properties of graphene. Unfortunately, recent experimental and theoretical studies have revealed that different N-doped graphene (NGR) conformations can result in both p- and n-type characters depending on the bonding nature of N atoms (substitutional, pyridinic, pyrrolic, and nitrilic). To overcome this obstacle in achieving reliable graphene doping, we have carried out density functional theory calculations and explored the feasibility of converting p-type NGRs into n-type by introducing additional dopant candidates atoms (B, C, O, F, Al, Si, P, S, and Cl). Evaluating the relative formation energies of various binary-doped NGRs and the change in their electronic structure, we conclude that B and P atoms are promising candidates to achieve robust n-type NGRs. The origin of such p- to n-type change is analyzed based on the crystal orbital Hamiltonian population analysis. Implications of our findings in the context of electronic and energy device applications will be also discussed.

  • PDF

A Study on the Prediction of the Material Properties of Magnesium Alloys Using Density Functional Theory Method (밀도함수 이론법을 이용한 마그네슘 합금의 재료특성 예측에 관한 연구)

  • Baek, Min-Sook;Won, Dae-Hee;Kim, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.637-641
    • /
    • 2007
  • The total energy and strength of Mg alloy doped with Al, Ca and Zn, were calculated using the density functional theory. The calculations was performed by two programs; the discrete variational $X{\alpha}\;(DV-X{\alpha})$ method, which is a sort of molecular orbital full potential method; Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The fundamental mixed orbital structure in each energy level near the Fermi level was investigated with simple model using $DV-X{\alpha}$. The optimized crystal structures calculated by VASP were compared to the measured structure. The density of state and the energy levels of dopant elements was discussed in association with properties. When the lattice parameter obtained from this study was compared, it was slightly different from the theoretical value but it was similar to Mk, and we obtained the reliability of data. A parameter Mk obtained by the $DV-X{\alpha}$ method was proportional to electronegativity and inversely proportional to ionic radii. We can predict the mechanical properties because $\Delta{\overline{Mk}}$is proportional to hardness.