Browse > Article
http://dx.doi.org/10.7464/ksct.2015.21.1.012

Conducting Polymers with Functional Dopants and their Applications in Energy, Environmental Technology, and Nanotechnology  

Kim, Sung Yeol (Department of Mechanical Engineering, Kyungpook National University)
Song, Hyun-Kon (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Clean Technology / v.21, no.1, 2015 , pp. 12-21 More about this Journal
Abstract
Development of novel conducting polymers (CPs) is expected to facilitate the advancement of functional materials used for energy, environmental, and nanotechnology. Recent research efforts are focused on doping CPs with functional dopants to enhance their performance or add additional functions that are not inherent in CPs. This review surveys literatures about the doped CPs focusing on the roles of functional dopants, unlike other reviews focusing on the development of new conducting polymer backbones. The functional dopants presented in this review include redox active molecules, carbon nanomaterials, biopolymers, and chelating molecules. Depending on the dopants and their physicochemical properties, the doped CPs can be used for a variety of applications such as polymer batteries, membranes for waste water treatment, and chemical sensors. A major challenge of the CPs is presented and the ways to overcome the challenge is also suggested for the future development of stable, high performance CPs.
Keywords
Conducting polymer; Functional dopant; Energy; Environmental technology; Nanotechnology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Qin, S. H., Qin, D. Q., Ford, W. T., Herrera, J. E., Resasco, D. E., Bachilo, S. M., and Weisman, R. B., "Solubilization and Purification of Single-Wall Carbon Nanotubes in Water by in Situ Radical Polymerization of Sodium 4-Styrenesulfonate," Macromolecules, 37(11), 3965-3967 (2004).   DOI   ScienceOn
2 Guldi, D. M., Rahman, G. M. A., Zerbetto, F., and Prato, M., "Carbon Nanotubes in Electron Donor-Acceptor Nanocomposites," Accounts Chem. Res., 38(11), 871-878 (2005).   DOI   ScienceOn
3 Hughes, M., Chen, G. Z., Shaffer, M. S. P., Fray, D. J., and Windle, A. H., "Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole," Chem. Mat., 14(4), 1610-1613 (2002).   DOI   ScienceOn
4 Wang, J., and Musameh, M., "Carbon-Nanotubes Doped Polypyrrole Glucose Biosensor," Anal. Chim. Acta, 539(1-2), 209-213 (2005).   DOI   ScienceOn
5 Chandra, V., and Kim, K. S., "Highly Selective Adsorption of $Hg^{2+}$ by a Polypyrrole-Reduced Graphene Oxide Composite," Chem. Commun., 47(13), 3942-3944 (2011).   DOI   ScienceOn
6 Misoska, V., Ding, J., Davey, J. M., Price, W. E., Ralph, S. F., and Wallace, G. G., "Polypyrrole Membranes Containing Chelating Ligands: Synthesis, Characterisation and Transport Studies," Polymer, 42(21), 8571-8579 (2001).   DOI   ScienceOn
7 Fei, J. F., Song, H. K., and Palmore, G. T. R., "A Biopolymer Composite That Catalyzes the Reduction of Oxygen to Water," Chem. Mater., 19(7), 1565-1570 (2007).   DOI   ScienceOn
8 Draget, K. I., SkjakBraek, G., and Smidsrod, O., "Alginate Based New Materials," Int. J. Biol. Macromol., 21(1-2), 47-55 (1997).   DOI   ScienceOn
9 Kim, S. Y., and Palmore, G. T. R., "Conductive Hydrogel for Bio-Electrocatalytic Reduction of Dioxygen," Electrochem. Commun., 23, 90-93 (2012).   DOI   ScienceOn
10 Hwang, R. Y., Kim, S. Y., Palmore, G. T. R., and Song, H. K., "Suppression of the Loss of an Electroactive Dopant from Polypyrrole by Using a Non-Aqueous Electrolyte of Dopant-Phobicity," J. Electroanal. Chem., 657(1-2), 181-186 (2011).   DOI   ScienceOn
11 Beck, F., Braun, P., and Oberst, M., "Organic Electrochemistry in the Solid State-Overoxidation of Polypyrrole," Berichte der Bunsengesellschaft fur physikalische Chemie, 91(9), 967-974 (1987).   DOI
12 Park, D. S., Shim, Y. B., and Park, S. M., "Degradation of Electrochemically Prepared Polypyrrole in Aqueous Sulfuric-Acid," J. Electrochem. Soc., 140(3), 609-614 (1993).   DOI
13 Kim, S. Y., Kim, K. M., Hoffman-Kim, D., Song, H. K., and Pamore, G. T. R., "Quantitative Control of Neuron Adhesion at a Neural Interface Using a Conducting Polymer Composite with Low Electrical Impedance," ACS Appl. Mater. Inter., 3(1), 16-21 (2011).   DOI   ScienceOn
14 Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., and Heeger, A. J., "Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene $(CH)_x$," J. Chem. Soc. Chem. Com., 578 (1977).
15 Chiang, C. K., Fincher, J., C. R., Park, Y. W., Heeger, A. J., Shirakawa, H., Louis, E. J., Gau, S. C., and MacDiarmid, A. G., "Electrical Conductivity in Doped Polyacetylene," Phys. Rev. Lett., 39(17), 1098-1101 (1977).   DOI
16 Diaz, A., "Electrochemical Preparation and Charaterizationof Conducting Polymers," Chem. Scripta, 17, 145-148 (1981).
17 Billingham, N. C., and Calvert, P. D., Electrically Conducting Polymers-A Polymer Science Viewpoint, Springer, New York, 1989, pp. 1-104.
18 Rubner, M. F., Conjugated Polymeric Conductors, in Molecular Electronics, Research Studies Press, Taunton, 1992, pp. 65-116.
19 Bredas, J. L., and Street, G. B., "Polarons, Bipolarons, and Solitons in Conducting Polymers," Accounts Chem. Res., 18 (10), 309-315 (1985).   DOI
20 Cosnier, S., "Biomolecule Immobilization on Electrode Surfaces by Entrapment or Attachment to Electrochemically Polymerized Films. A Review," Biosens. Bioelectron., 14(5), 443-456 (1999).   DOI   ScienceOn
21 Li, G. T., Bhosale, S., Tao, S. Y., Bhosale, S., and Fuhrhop, J. H., "Conducting Polythiophenes with a Broad Spectrum of Reactive Groups," J. Polym. Sci. Pol. Chem., 43(19), 4547-4558 (2005).   DOI   ScienceOn
22 Mouffouk, F., and Higgins, S. J., "A Biotin-Functionalised Poly(3,4-Ethylenedioxythiophene)-Coated Microelectrode Which Responds Electrochemically to Avidin Binding," Electrochem. Commun., 8(1), 15-20 (2006).   DOI   ScienceOn
23 Jager, E. W. H., Smela, E., and Inganas, O., "Microfabricating Conjugated Polymer Actuators," Science, 290(5496), 1540-1545 (2000).   DOI   ScienceOn
24 Noufi, R., Tench, D., and Warren, L. F., "Protection of Semiconductor Photo-Anodes with Photoelectrochemically Generated Polypyrrole Films," J. Electrochem. Soc., 128(12), 2596-2599 (1981).   DOI
25 Lian, G. H., and Dong, S. J., "Electrochemical-Behavior of Fe(Cn)6(3-)/4-Redox Ions in a Polypyrrole Film," J. Electroanal. Chem., 260(1), 127-136 (1989).   DOI   ScienceOn
26 Rosenthal, M. V., Skotheim, T. A., and Linkous, C. A., "Polypyrrole Phthalocyanine," Synth. Met., 15(2-3), 219-227 (1986).   DOI   ScienceOn
27 Elzing, A., Vanderputten, A., Visscher, W., and Barendrecht, E., "The Mechanism of Oxygen Reduction at Iron Tetrasulfonato-Phthalocyanine Incorporated in Polypyrrole," J. Electroanal. Chem., 233(1-2), 113-123 (1987).   DOI   ScienceOn
28 Choi, C. S., and Tachikawa, H., "Electrochemical-Behavior and Characterization of Polypyrrole Copper Phthalocyanine Tetrasulfonate Thin-Film-Cyclic Voltammetry and Insitu Raman-Spectroscopic Investigation," J. Am. Chem. Soc., 112 (5), 1757-1768 (1990).   DOI
29 Saunders, B. R., Murray, K. S., Fleming, R. J., and Korbatieh, Y., "Physical and Spectroscopic Studies of Polypyrrole Films Containing Tetrasulfonated Metallophthalocyanine Counterions Prepared from Nonaqueous Solution," Chem. Mat., 5(6), 809-819 (1993).   DOI   ScienceOn
30 Ikeda, O., Okabayashi, K., Yoshida, N., and Tamura, H., "Spectroelectrochemical Study of Oxygen Reduction at Metalloporphyrin-Doped Polypyrrole Film Electrodes," J. Electroanal. Chem., 191(1), 157-174 (1985).   DOI   ScienceOn
31 Bedioui, F., Bongars, C., Devynck, J., Biedcharreton, C., and Hinnen, C., "Metalloporphyrin Polypyrrole Film Electrode-Characterization and Catalytic Application," J. Electroanal. Chem., 207(1-2), 87-99 (1986).   DOI   ScienceOn
32 Song, E. H., and Paik, W. K., "Polypyrrole Doped with Sulfonate Derivatives of Metalloporphyrin: Use in Cathodic Reduction of Oxygen in Acidic and Basic Solutions," B. Kor. Chem. Soc., 19(2), 183-188 (1998).
33 Kajiya, Y., Sugai, H., Iwakura, C., and Yoneyama, H., "Glucose Sensitivity of Polypyrrole Films Containing Immobilized Glucose-Oxidase and Hydroquinonesulfonate Ions," Anal. Chem., 63(1), 49-54 (1991).   DOI
34 Li, C., Hatano, T., Takeuchi, M., and Shinkai, S., "Facile Design of Poly(3,4-Ethylenedioxythiophene)-Tris(2,2'-Bipyridine) Ruthenium (Ii) Composite Film Suitable for a Three-Dimensional Light-Harvesting System," Tetrahedron, 60, 8037-8041 (2004).   DOI   ScienceOn
35 Li, Y. J., and Dong, S. J., "Indigo-Carmine-Modified Polypyrrole Film Electrode," J. Electroanal. Chem., 348(1-2), 181-188 (1993).   DOI   ScienceOn
36 Song, H. K., and Palmore, G. T. R., "Redox-Active Polypyrrole: Toward Polymer-Based Batteries," Adv. Mater., 18(13), 1764-1768 (2006).   DOI   ScienceOn
37 Milczarek, G., and Inganas, O., "Renewable Cathode Materials from Biopolymer/Conjugated Polymer Interpenetrating Networks," Science, 335(6075), 1468-1471 (2012).   DOI   ScienceOn
38 Girotto, E. M., and De Paoli, M. A., "Polypyrrole Color Modulation and Electrochromic Contrast Enhancement by Doping with a Dye," Adv. Mater., 10(10), 790-793 (1998).   DOI
39 Girotto, E. M., Gazotti, W. A., Tormena, C. F., and De Paoli, M. A., "Photoelectronic and Transport Properties of Polypyrrole Doped with a Dianionic Dye," Electrochim. Acta, 47(9), 1351-1357 (2002).   DOI   ScienceOn
40 Song, H. K., Lee, E. J., and Oh, S. M., "Electrochromism of 2,2'-Azinobis(3-Ethylbenzothiazoline-6-Sulfonate) Incorporated into Conducting Polymer as a Dopant," Chem. Mat., 17(9), 2232-2233 (2005).   DOI   ScienceOn
41 Song, H. K., and Palmore, G. T. R., "Conductive Polypyrrole Via Enzyme Catalysis," J. Phys. Chem. B, 109(41), 19278-19287 (2005).   DOI
42 Fei, J. F., Lim, K. G., and Palmore, G. T. R., "Polymer Composite with Three Electrochromic States," Chem. Mater., 20(12), 3832-3839 (2008).   DOI   ScienceOn
43 Garner, B., Hodgson, A. J., Wallace, G. G., and Underwood, P. A., "Human Endothelial Cell Attachment to and Growth on Polypyrrole-Heparin Is Vitronectin Dependent," J. Mater. Sci., 10(1), 19-27 (1999).
44 Garner, B., Georgevich, A., Hodgson, A. J., Liu, L., and Wallace, G. G., "Polypyrrole-Heparin Composites as Stimulus-Responsive Substrates for Endothelial Cell Growth," J. Biomed. Mater. Res., 44(2), 121-129 (1999).   DOI
45 Hodgson, A. J., John, M. J., Campbell, T., Georgevich, A., Woodhouse, S., Aoki, T., Ogata, N., and Wallace, G. G., "Integration of Biocomponents with Synthetic Structures-Use of Conducting Polymer Polyelectrolyte Composites," Proc. SPIE, 2716, 164-176 (1996).
46 Collier, J. H., Camp, J. P., Hudson, T. W., and Schmidt, C. E., "Synthesis and Characterization of Polypyrrole-Hyaluronic Acid Composite Biomaterials for Tissue Engineering Applications," J. Biomed. Mater. Res., 50(4), 574-584 (2000).   DOI
47 Khor, E., and Whey, J. L. H., "Interaction of Chitosan with Polypyrrole in the Formation of Hybrid Biomaterials," Carbohyd. Polym., 26(3), 183-187 (1995).   DOI   ScienceOn
48 Li, H. C., and Khor, E., "A Collagen-Polypyrrole Hybrid-Influence of 3-Butanesulfonate Substitution," Macromol. Chem. Phys., 196(6), 1801-1812 (1995).   DOI
49 Hodgson, A. J., Gilmore, K., Small, C., Wallace, G. G., Mackenzie, I. L., Aoki, T., and Ogata, N., "Reactive Supramolecular Assemblies of Mucopolysaccharide, Polypyrrole and Protein as Controllable Biocomposites for a New Generation of 'Intelligent Biomaterials'," Supramol. Sci., 1(2), 77-83 (1994).   DOI   ScienceOn
50 Wang, J., and Jiang, M., "Toward Genolelectronics: Nucleic Acid Doped Conducting Polymers," Langmuir, 16(5), 2269-2274 (2000).   DOI   ScienceOn
51 Boyle, A., Genies, E., and Fouletier, M., "Electrochemical-Behavior of Polypyrrole Films Doped with Atp Anions," J. Electroanal. Chem., 279(1-2), 179-186 (1990).   DOI   ScienceOn
52 Cui, X. Y., Lee, V. A., Raphael, Y., Wiler, J. A., Hetke, J. F., Anderson, D. J., and Martin, D. C., "Surface Modification of Neural Recording Electrodes with Conducting Polymer/Biomolecule Blends," J. Biomed. Mater. Res., 56(2), 261-272 (2001).   DOI
53 Song, H. K., Toste, B., Ahmann, K., Hoffman-Kim, D., and Palmore, G. T. R., "Micropatterns of Positive Guidance Cues Anchored to Polypyrrole Doped with Polyglutamic Acid: A New Platform for Characterizing Neurite Extension in Complex Environments," Biomaterials, 27(3), 473-484 (2006).   DOI   ScienceOn
54 Kim, S. Y., Sen, S., Song, H. K., and Palmore, G. T. R., "Enhancing the Stability and Performance of a Battery Cathode Using a Non-Aqueous Electrolyte," Electrochem. Commun., 12(6), 761-764 (2010).   DOI   ScienceOn
55 Chen, G. Z., Shaffer, M. S. P., Coleby, D., Dixon, G., Zhou, W. Z., Fray, D. J., and Windle, A. H., "Carbon Nanotube and Polypyrrole Composites: Coating and Doping," Adv. Mater., 12(7), 522-526 (2000).   DOI
56 Wei, Z. X., Wan, M. X., Lin, T., and Dai, L. M., "Polyaniline Nanotubes Doped with Sulfonated Carbon Nanotubes Made Via a Self-Assembly Process," Adv. Mater., 15(2), 136-139 (2003).   DOI   ScienceOn
57 Shaffer, M. S. P., Fan, X., and Windle, A. H., "Dispersion and Packing of Carbon Nanotubes," Carbon, 36(11), 1603-1612 (1998).   DOI   ScienceOn