• Title/Summary/Keyword: Functional connectivity multivariate pattern analysis

Search Result 3, Processing Time 0.017 seconds

Interactivity within large-scale brain network recruited for retrieval of temporally organized events (시간적 일화기억인출에 관여하는 뇌기능연결성 연구)

  • Nah, Yoonjin;Lee, Jonghyun;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.3
    • /
    • pp.161-192
    • /
    • 2018
  • Retrieving temporal information of encoded events is one of the core control processes in episodic memory. Despite much prior neuroimaging research on episodic retrieval, little is known about how large-scale connectivity patterns are involved in the retrieval of sequentially organized episodes. Task-related functional connectivity multivariate pattern analysis was used to distinguish the different sequential retrieval. In this study, participants performed temporal episodic memory tasks in which they were required to retrieve the encoded items in either the forward or backward direction. While separately parsed local networks did not yield substantial efficiency in classification performance, the large-scale patterns of interactivity across the cortical and sub-cortical brain regions implicated in both the cognitive control of memory and goal-directed cognitive processes encompassing lateral and medial prefrontal regions, inferior parietal lobules, middle temporal gyrus, and caudate yielded high discriminative power in classification of temporal retrieval processes. These findings demonstrate that mnemonic control processes across cortical and subcortical regions are recruited to re-experience temporally-linked series of memoranda in episodic memory and are mirrored in the qualitatively distinct global network patterns of functional connectivity.

Interactivity of Neural Representations for Perceiving Shared Social Memory

  • Ahn, Jeesung;Kim, Hye-young;Park, Jonghyun;Han, Sanghoon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.29-48
    • /
    • 2018
  • Although the concept of "common sense" is often taken for granted, judging whether behavior or knowledge is common sense requires a complex series of mental processes. Additionally, different perceptions of common sense can lead to social conflicts. Thus, it is important to understand how we perceive common sense and make relevant judgments. The present study investigated the dynamics of neural representations underlying judgments of what common sense is. During functional magnetic resonance imaging, participants indicated the extent to which they thought that a given sentence corresponded to common sense under the given perspective. We incorporated two different decision contexts involving different cultural perspectives to account for social variability of the judgments, an important feature of common sense judgments apart from logical true/false judgments. Our findings demonstrated that common sense versus non-common sense perceptions involve the amygdala and a brain network for episodic memory recollection, including the hippocampus, angular gyrus, posterior cingulate cortex, and ventromedial prefrontal cortex, suggesting integrated affective, mnemonic, and social functioning in common sense processing. Furthermore, functional connectivity multivariate pattern analysis revealed that interactivity among the amygdala, angular gyrus, and parahippocampal cortex reflected representational features of common sense perception and not those of non-common sense perception. Our study demonstrated that the social memory network is exclusively involved in processing common sense and not non-common sense. These results suggest that intergroup exclusion and misunderstanding can be reduced by experiencing and encoding long-term social memories about behavioral norms and knowledge that act as common sense of the outgroup.

Exploring the contextual factors of episodic memory: dissociating distinct social, behavioral, and intentional episodic encoding from spatio-temporal contexts based on medial temporal lobe-cortical networks (일화기억을 구성하는 맥락 요소에 대한 탐구: 시공간적 맥락과 구분되는 사회적, 행동적, 의도적 맥락의 내측두엽-대뇌피질 네트워크 특징을 중심으로)

  • Park, Jonghyun;Nah, Yoonjin;Yu, Sumin;Lee, Seung-Koo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.2
    • /
    • pp.109-133
    • /
    • 2022
  • Episodic memory consists of a core event and the associated contexts. Although the role of the hippocampus and its neighboring regions in contextual representations during encoding has become increasingly evident, it remains unclear how these regions handle various context-specific information other than spatio-temporal contexts. Using high-resolution functional MRI, we explored the patterns of the medial temporal lobe (MTL) and cortical regions' involvement during the encoding of various types of contextual information (i.e., journalism principle 5W1H): "Who did it?," "Why did it happen?," "What happened?," "When did it happen?," "Where did it happen?," and "How did it happen?" Participants answered six different contextual questions while looking at simple experimental events consisting of two faces with one object on the screen. The MTL was divided to sub-regions by hierarchical clustering from resting-state data. General linear model analyses revealed a stronger activation of MTL sub-regions, the prefrontal lobe (PFC), and the inferior parietal lobule (IPL) during social (Who), behavioral (How), and intentional (Why) contextual processing when compared with spatio-temporal (Where/When) contextual processing. To further investigate the functional networks involved in contextual encoding dissociation, a multivariate pattern analysis was conducted with features selected as the task-based connectivity links between the hippocampal subfields and PFC/IPL. Each social, behavioral, and intentional contextual processing was individually and successfully classified from spatio-temporal contextual processing, respectively. Thus, specific contexts in episodic memory, namely social, behavior, and intention, involve distinct functional connectivity patterns that are distinct from those for spatio-temporal contextual memory.