• Title/Summary/Keyword: Functional characterization

Search Result 800, Processing Time 0.026 seconds

Fish Myogenic Regulatory Protein LUC7L: Characterization and Expression Analysis in Korean Rose Bitterling (Rhodeus uyekii)

  • Kim, Ju Lan;Kong, Hee Jeong;Kim, Hyung Soo;Kim, Woo-Jin;Kim, Dong-Gyun;Nam, Bo-Hye;Kim, Young-Ok;An, Cheul Min
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.251-258
    • /
    • 2014
  • Serine-arginine-rich nuclear protein LUC7L plays an important role in the regulation of myogenesis in mice. In the present study, we isolated and characterized the Korean rose bitterling Rhodeus uyekii Luc7l cDNA, designated RuLuc7l. The RuLuc7l cDNA is 1,688 bp long and encodes a 364-amino-acid polypeptide containing serine/arginine-rich region at the C-terminus. The deduced RuLuc7l protein has high amino acid identity (71-97%) with those of other species including human. Phylogenetic analysis revealed that RuLUC7L clustered with fish LUC7L proteins. The expression of RuLuc7l mRNA was high in the brain, kidney, and stomach of Korean rose bitterling. Expression of the RuLuc7l mRNA was detected from 1 day post-fertilization (dpf) and moderately increased until 21 dpf during the early development. Further investigations are required to elucidate the functional role of RuLUC7L in myogenesis in R. uyekii.

Characterization of Chitin and Chitosan as a Biomedical Polymer (생체의료용 재료로써 키틴·키토산의 특성)

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2008
  • Development of various medical systems was accomplished through the progress of biotechnological method for therapy of human diseases. Furthermore, drug delivery systems have been investigated to carry the bioactive materials such as drug or gene in the body effectively. The most important thing in this system is to develop biomedical polymers having biocompatibility, biodegradability, and non-toxicity. Chitosan, a natural polymer, has been importantly considered as biomedical materials due to its good biocompatibility and various bio-active characteristics. Since the property of chitosan is differently explained according to the crystalline structures of chitin, the study for structural analysis of chitin has to proceed to apply as a biomaterial. From this point of view, this article introduced the analysis of crystalline structural of chitin, general property of chitosan and potential characteristics of low molecular weight water-soluble chitosan (LMWSC) as a biomaterials. Furthermore, chemical modification of LMWSC using various functional groups was also performed to enhance its bioavailability and emphasize their potential as drug delivery carriers (DDS).

Characterization of Erwinia tasmaniensis Isolated from Nuruk Producing Alginate Lyase (누룩으로부터 분리한 알긴산 분해 효소 생산 균주인 Erwinia tasmaniensis의 특성)

  • Kim, Hyun Ji;Lee, Sung-Mok;Kim, Sung-Koo;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.100-104
    • /
    • 2012
  • Oligosaccharides production showed various biological activities in vivo like functional foods and industrial materials utilized available within many practical applications which have obtained from the degradation of alginate. Alginate is rich in the main component of seaweeds especially the brown algae. We investigated what degrading alginate from seaweeds to make alginate oligosaccharides can utilize in various fields using enzyme secreting Erwinia tasmaniensis. In this study, we observed an optimal culture condition of E. tasmaniensis, and characteristics of alginate lyase secreting E. tasmaniensis. These bacteria, E. tasmaniensis, were isolated from Nuruk. In this case, a suitable growth factor for E. tasmaniensis was culture it for 36 h in broth media on concentration of 1.0% (w/v) alginate. The enzyme showed the highest level of alginate lyase activity when cultured on broth media containing 1.0% (w/v) sodium alginate for 72 h. Optimal condition of pH, temperature and duration time for alginate lyase activity were found to be pH 6.0, $20^{\circ}C$ and 60 min, respectively.

Characterization of ${\gamma}$-Polyglutamic Acid Produced from the Solid-state Fermentation of Soybean Milk Cake Using Bacillus sp.

  • Oh, Soo-Myung;Jang, Eun-Kyung;Seo, Ji-Hyun;Ryu, Mi-Jin;Lee, Sam-Pin
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.509-514
    • /
    • 2007
  • In this study, we optimized the production of ${\gamma}-polyglutamic$ acid (PGA) in soybean milk cakes (SMC) fermented with Bacillus subtilis GT-D and B. subtilis KU-A, to be utilized as a functional food ingredient. PGA production was dependent upon the glutamate content, fermentation time, and type of Bacillus sp. The consistencies of the SMCs fermented by B. subtilis GT-D and B. subtilis KU-A were highest after 36 hr of fermentation, and then decreased gradually. The SMC fermented by B. subtilis KU-A had a higher consistency than the SMC fermented by B. subtilis GT-D. In the presence of 10% defatted soy flour (DFS), 5% glutamate in the SMC was efficiently converted into polyglutamic acid (PGA) for 24 hr, indicating a conversion yield above 96%, but its conversion then decreased with higher concentrations of glutamate. The soluble solid content (mucilage) of the SMC fermented with B. subtilis KU-A was 9.5%(w/w), and composed of 65.6% PGA (Mw 1,536 kDa) and some polysaccharides. However, the SMC fermented with B. subtilis GT-D had a mucilage content of 7.8%(w/w), and was composed of 66.4% PGA (Mw 1,409 kDa), 11.5% levan, and some polysaccharides. The viscoelastic values of the mucilage obtained using B. subtilis KU-A were much higher than those of mucilage obtained using B. subtilis GT-D. Also, the G'-value (elastic modulus) was higher than the G"-value (viscous modulus).

Cloning and Characterization of the pyrH Gene Encoding UMP-Kinase from Lactobacillus reuteri ATCC 55739

  • PARK JAE-YONG;NAM SU JIN;KIM JONG-HWAN;JEONG SEON-JU;KIM JUNG KON;HA YEONG LAE;KIM JEONG HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.525-531
    • /
    • 2005
  • From a genomic library of Lactobacillus reuteri ATCC 55739, one clone, NE347, carrying a pyrH gene encoding UMP kinase, was identified. pNE347 carried a 1.88 kb EcoRI fragment and the pyrH was located in the middle of the insert. pyrH ORF was 723 bp in size and capable of encoding UMP kinase composed of 240 amino acid residues. tsf encoding an elongation factor-Ts and frr encoding a ribosomal recycling factor were present upstream and downstream of pyrH, respectively. When introduced into E. coli KUR1244, a pyrH-negative strain, pNE347 restored the ability to grow at $42^{\circ}C$, indicating that pyrH from L. reuteri synthesized functional UMP kinase in E. coli. Northern blot experiment showed that pyrH and frr were cotranscribed as a 1.4 kb single transcript. pyrH was overexpressed in E. coli by using a pET26b(+) vector, and a major 25 kDa protein band appeared on SDS-polyacrylamide gel.

Characterization of Mitochondrial Heat Shock Protein 75 (mtHSP75) of the Big-belly Seahorse Hippocampus abdominalis (빅벨리해마(Hippocampus abdominalis)에서의 Mitochondrial Heat Shock Protein 75 유전자의 특징과 발현 분석)

  • Ko, Jiyeon;Qiang, Wan;Lee, Sukkyoung;Bathige, S.D.N.K.;Oh, Minyoung;Lee, Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.3
    • /
    • pp.354-361
    • /
    • 2015
  • Mitochondrial heat shock protein 75 (mtHSP75) is a member of the HSP90 family and plays essential roles in refolding proteins of the mitochondrial matrix. Mitochondria provide energy in the form of ATP and generate reactive oxygen species (ROS). Heat shock proteins (HSPs) are activated in response to stress, and protect cells. In this study, we characterized the mtHSP75 of the big-belly seahorse Hippocampus abdominalis. The protein (BsmtHSP75) is encoded by an open reading frame (ORF) of 2,157 nucleotides, has 719 amino acids (aa), and is of molecular mass 82 kDa. BsmtHSP75 has two functional domains, a histidine kinase-like ATPase (HATPase_c) domain (123-276 aa) and an HSP90 family domain (302-718 aa). BsmtHSP75 was expressed in all tested tissues of healthy seahorses. The ovary contained the highest transcription level, followed (in order) by the blood, brain, and muscle. Pouch tissue showed the lowest expression level. The expression of BsmtHSP75 was significantly (P<0.05) up-regulated on viral or bacterial challenge, suggesting that BsmtHSP75 plays a role in the immune defense against bacterial and viral pathogens.

Improvement on the Antioxidant Activity of Instant Noodles Containing Enzymatic Extracts from Ecklonia cava and Its Quality Characterization (감태 효소 추출물을 이용한 즉석 국수의 항산화성 개선 및 품질 특성)

  • Heu, Min-Soo;Yoon, Min-Seok;Kim, Hyung-Jun;Park, Kwon-Hyun;Lee, Jong-Hyun;Jo, Mi-Ran;Lee, Jung-Suk;Jeon, You-Jin;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.391-399
    • /
    • 2010
  • This study was conducted to improve the antioxidative activity of instant noodles containing enzymatic extracts from Ecklonia cava (EEC). EEC has relatively better antioxidative activity than extracts from other indigenous plants in Jeju Island. The EEC (2.5 mg/mL) had 82.5% for the hydroxy radical, 78.4% for the DPPH radical, and 64.9% for the superoxide anion radical scavenging activities, and 65.2% for the cell viability (100 ${\mu}g/mL$). According to the texture of the dough, the DPPH free radical scavenging of uncooked instant noodles, sensory evaluation of cooked instant noodles, and turbidity of the cooking drip, the optimal EEC concentration was 1.8% for the instant noodles. The major amino acids in the instant noodles with EEC were glutamic acid (24.2%), proline (10.2%), valine (10.0%), and isoleucine (12.3%). The zinc and iron in the instant noodles were enhanced by adding 1.5-1.8% EEC. The antioxidant activity of instant noodles with EEC was 75.4% for the hydroxy radical, 74.1% for the DPPH radical, and 51.2 % for the superoxide anion radical scavenging activities.

Characterization of Acid- and Pepsin-soluble Collagens from Rockfish Sebastes schlegeli Skin

  • Kim, Hyung-Jun;Jee, Seong-Joon;Yoon, Min-Suck;Youn, Mu-Ho;Kang, Kyung-Tae;Lee, Dong-Ho;Heu, Min-Soo;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.6-15
    • /
    • 2009
  • Biochemical and functional properties of acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from rockfish skin were characterized. Yield of PSC (90.0%) was higher than that of ASC (63.2%). Both ASC and the PSC consisted of ${\alpha}1$ and ${\alpha}2$ chains, and $\alpha$-cross-linked components. According to the results of hydroxylation of proline and lysine, and FT-IR, no difference between the helical structure of ASC and PSC was identified. Thermal denaturation temperature (TDT) of ASC from rockfish skin was $22.8^{\circ}C$, the same as exhibited in PSC. Both ASC and PSC were higher in water absorption capacity (WAC) and oil absorption capacity (OAC) than other vegetable proteins. According to the results of emulsifying activity (EA) and cooking stability (CS), both ASC and PSC from rockfish skin were inferior compared to the commercial emulsifier (Tween-80). The results of FT-IR suggested that the structure of PSC was slightly different when compared to that of ASC. No differences in solubility were established between ASC and PSC from rockfish skin at various pH and NaCl concentrations.

Characterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells

  • Hong, Chang-Pyo;Choe, Moon-Kyung;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • v.10 no.3
    • /
    • pp.145-152
    • /
    • 2012
  • Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq) histone modification patterns for histone H3K4me1, H3K4me3, H3K9/16ac, and H3K27me3 in MCF-7 cells with publicly available formaldehyde-assisted isolation of regulatory elements (FAIRE)-chip signals in human chromosomes 8, 11, and 12, identified by a method called FAIRE. Active regulatory elements defined by FAIRE were highly associated with active histone modifications, like H3K4me3 and H3K9/16ac, especially near transcription start sites. The H3K9/16ac-enriched genes that overlapped with FAIRE signals (FAIRE-H3K9/14ac) were moderately correlated with gene expression levels. We also identified functional sequence motifs at H3K4me1-enriched FAIRE sites upstream of putative promoters, suggesting that regulatory elements could be associated with H3K4me1 to be regarded as distal regulatory elements. Our results might provide an insight into epigenetic regulatory mechanisms explaining the association of histone modifications with open chromatin structure in breast cancer cells.

Micro Porous Clay Mineral Absorption / Desorption Moisture-Proof Performance of The Atmospheric Humidity and Decomposing The Polyamide Adsorption Performance Characterization of Formaldehyde (미세 다공질 광물과 아미드계 분해제의 적용을 통한 건축자재의 습도 조절과 폼알데히드 분해 성능 특성 평가)

  • Lee, Che Cheol;Kim, Yun Hwan;Yun, Seng Hee
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.105-109
    • /
    • 2014
  • The recent rising living standards, environment-friendly, well-being and health aspects of life in the basic gratification, as well as the desire for a pleasant environment emotionally environmentally friendly way of external space or industrial interest in the indoor environment, the manifestation. In particular, the biggest problem of the indoor environment has been emerged as a Sick House Syndrome indoor space that is provided to the building materials, and the impact on the domestic and the indoor environment, and clean the house in a health standards are specified as laws. The performance rating and the various materials to create environmentally-friendly standards for building materials. The more detail, Porous clay material, toxic substances released by applying the high humidity and the water itself, and to absorb the moisture, if the emissions, without a separate device, to maintain a comfortable indoor environment and at the same time, one of the causes of Sick House Syndrome breaking down harmful substances to absorb a comfortable indoor environment to maintain an environmentally-friendly building interior material studies. It is aimed at the development to multi-functional high performance eco-friendly construction materials, rather than through one feature performance, identify key features for national and international eco-friendly building materials can exert Water Vapour Adsorption raw, decomposed materials for the application and selection.