• Title/Summary/Keyword: Functional characterization

Search Result 793, Processing Time 0.024 seconds

Identification of Fruit-specific cDNAs in a Ripened Inodorus Melon Using Differential Screening and the Characterization of on Abscisic Acid Responsive Gene Homologue

  • Hong, Se-Ho;Kim, In-Jung;Chung, Won-Il
    • Journal of Plant Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • Eight cDNAs corresponding to fruit-specific genes were isolated from ripened melon through differential screening. Sequence comparison indicated that six of these cDNAs encoded proteins were previously characterized into aminocyclopropane-1-carboxylate (ACC) oxidase, abscisic acid, stress and ripening inducible (ASR) gene, RINC-H2 zinc finger protein, pyruvate decarboxylase, or polyubiquitin. RFS2 and RFS5 were the same clone encoding polyubiquitin. The other cDNAs showed no significant homology with known protein sequences. The ASR homologue (Asr1) gene was further characterized on the cDNA and genomic structure. The deduced amino acid sequence had similar characteristics to other plant ASR. The Asr1 genomic DNA consisted of 2 exons and 1 intron, which is similar to the structure of other plants ASR genes. The promoter region of the Asr1 gene contained several putative functional cis-elements such as an abscisic acid responsive element (ABRE), an ethylene responsive element (ERE), a C-box or DPBf-1 and 2, Myb binding sites, a low temperature responsive element (LTRE) and a metal responsive element (MRE). The findings imply that these elements may play important roles in the response to plant hormones and environmental stresses in the process of fruit development. The results of this study suggest that the expressions of fruit specific and ripening-related cDNAs are closely associated with the stress response.

Characterization of Ca2+-Dependent Protein-Protein Interactions within the Ca2+ Release Units of Cardiac Sarcoplasmic Reticulum

  • Rani, Shilpa;Park, Chang Sik;Sreenivasaiah, Pradeep Kumar;Kim, Do Han
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.149-155
    • /
    • 2016
  • In the heart, excitation-contraction (E-C) coupling is mediated by $Ca^{2+}$ release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the $Ca^{2+}$ release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich $Ca^{2+}$ binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202-231). Second, in vitro binding assays were conducted to examine the $Ca^{2+}$ dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped $Ca^{2+}$ dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such $Ca^{2+}$ dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of $Ca^{2+}$ into SR at intermediate $Ca^{2+}$ concentrations.

Construction of Stably Transformed Bm5 Cells by Using Autographa californica Nuclear Polyhedrosis Virus IE1 Gene

  • Cho, Eun-Sook;Jin, Byung-Rae;Sohn, Hung-Dae;Chol, Kwang-Ho;Kim, Soung-Ryul;Kang, Seok-Woo;Yun, Eun-Young;Kim, Sang-Hyun;Kim, Keun-Young
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.2
    • /
    • pp.111-116
    • /
    • 1998
  • To construct transformed Bm5 cells, Autographa californica nuclear polyhedrosis virus (AcNPV)IE1 gene, an immediate early viral gene was firstly used in this study. AcNPV IE1 gene, which shares on 95.3% uncleotide sequence homology with Bombyx mori nuclear polyhedrosis virus (BmNPV) IE1 gene, was isolated and cloned into pBluescript. Neomycin gene from pKO-neo was inserted under the control of the IE1 promoter to yield pAcIE1-neo. The plasmid pAcIE1-neo was transfected into Bm5 or Sf9 cells, and neomycin-resistant cells were selected in TC100 medium containing 10% fetal bovine serum (FBS) and 1 mg/$m\ell$ G418 for two weeks. Individual clones were picked and each was amplified for further characterization. The genomic DNA from neomycin-resistnt cells was isolated and characterized by PCR using AcNPV IE1 gene-specific primers and by Southern blot analysis using neomycin gene probe. We concluded that AcNPV IE1 gene was functional in B. moridrived Bm5 cells as well as Spodaptera frugiperda-derived Sf9 cells to produce stably-transformed insect cells.

  • PDF

Role of Oxidative Stress and Mitochondria in Parkinson's Disease

  • Jin, Son-Hyeung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.04a
    • /
    • pp.147-153
    • /
    • 2007
  • Central to developing new treatment strategies for late onset sporadic Parkinson's disease (PD) and early onset familial PD is resolving the enigma of the specific vulnerability exhibited by substantia nigra dopamine (DA) neurons despite multiple risk factors. Neuropathological evidence from both human and experimental models of PD firmly supports a significant role for oxidative stress (OS) and mitochondrial dysfunction in the death of nigral DA neurons. Largely unknown are the genes underlying selective susceptibility of nigral DA neuron to OS and mitochondrial dysfunction and how they effect nigral DA cell death. To overcome the paucity of nigral DA neurons as well as the dilution effect of non-DA cells in brain tissues, we have developed wild type DA cell line model, SN4741 and mutant DJ-1 (-/-) DA cells, appropriate for microarray analysis and differential mitochondrial proteomics. Mutations in the DJ-1 gene (PARK7), localized in cytoplasm and mitochondria, cause autosomal recessive early onset PD. Through microarray analysis using SN4741 cells followed by validation tests, we have identified a novel phylogenically conserved neuroprotective gene, Oxi-a, which is specifically expressed in DA neurons. The knockdown of the gene dramatically increased vulnerability to as. Importantly as down-regulated the expression level of the gene and recovery of its expression via transient transfection exerted significant neuroprotection against as insult. We also have identified altered expression of mitochondrial proteins and other familial PD genes in DJ-1 (-/-) mutant cells by differential mitochondrial proteomics. In DJ-1 (-/-) cells the knockdown of the other familial PD genes (Parkin and PINK1) dramatically increased susceptibility to as. Thus, further functional characterization of the Oxi-$\alpha$ gene family and the mitochondrial alteration in the DJ-1 (-/-) cell model will provide the rationale for the neuroprotective therapy against both sporadic and familial PD.

  • PDF

Isolation and functional characterization of BrUGT gene encoding a UDP-glycosyltransferase from Chinese cabbage (Brassica rapa)

  • Jung, Yu-Jin;Lee, Hye-Jung;Choi, Jang-Sun;Cho, Yong-Gu;Nou, Ill-Sup;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.212-218
    • /
    • 2012
  • Glycosyltransferases are enzymes (EC 2.4) that catalyze the transfer of monosaccharide moieties from activated nucleotide sugar to a glycosyl acceptor molecule which can be a carbohydrate, glycoside, oligosaccharide, or a polysaccharide. In this study, a UDP-glucosyltransferase cDNA was isolated from Brassica rapa using a rapid amplification of cDNA ends (RACE) and subsequently named BrUGT. It has a full-length cDNA of 1,236 bp with 119 bp 5'-untranslated region (UTR), a complete ORF of 834 bp encoding a polypeptide of 277 amino acids (31.19 kDa) and a 3'-UTR of 283 bp. BLASTX analysis hits a catalytic domain of Glycos_transf_1 super family (cl12012) that belongs to the Glycosyltransferases group 1 with tetratricopeptide (TPR) regions located between 165 to 350 bp. Expression analysis showed high mRNA transcripts in pistil, followed by petal, seed and calyx of flower. Moreover, expression analysis of BrUGT in Chinese cabbage seedlings under stresses of cold, salt, PEG, $H_2O_2$, drought and ABA showed elevated mRNA transcript. Furthermore, when BrUGT gene was transformed into rice using pUbi-1 promoter, overexpression was evident among the $T_1$ plants. This study provides insights into the function of BrUGT in plants.

A New Bicistronic Fragmentation Vector for Manipulation and Analysis of Functional Yeast Artificial Chromosomes (YACs) (Yeast Artificial Chromosome의 효율적인 조작과 분석을 위한 새로운 Bicistronic Fragmentation Vector의 개발에 관한 연구)

  • 임향숙;최주연;김인경;강성만;성영모
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.28-34
    • /
    • 1999
  • Fragmentation vectors are used to analyze function and genomic structure of a gene of interest by creating deletion derivatives of large fragments of genomic DNA cloned as yeast artificial chromosomes (YACs). Herein, we developed a new hicistronic fragmentation vector that contains internal ribosomal entry sile (IRES) of encephalomyocarditis vin~s (EMCV) and $\beta$-galactosidase as a reporter gene. This vector system provides a novcl loo1 to analyze expression patterns of a gene of interest due to simultaneous expression of a target gene as well as $\beta$-galactosidase driven from a single message. In addition, the bicistronic fragmentation vector contains four rare-cutting restriction enzyme sites in the polycloning sites which can be used to conveniently insert any kinds of genes and therefore facilitates targeting DNA scgments into YAC by means of homologous recombination. This approach establishes a paradigm for manipulation of mammalian DNA segments and characterization of expression and regulatory regions of mammalian gene cloned as YAC.

  • PDF

Fish Myogenic Regulatory Protein LUC7L: Characterization and Expression Analysis in Korean Rose Bitterling (Rhodeus uyekii)

  • Kim, Ju Lan;Kong, Hee Jeong;Kim, Hyung Soo;Kim, Woo-Jin;Kim, Dong-Gyun;Nam, Bo-Hye;Kim, Young-Ok;An, Cheul Min
    • Development and Reproduction
    • /
    • v.18 no.4
    • /
    • pp.251-258
    • /
    • 2014
  • Serine-arginine-rich nuclear protein LUC7L plays an important role in the regulation of myogenesis in mice. In the present study, we isolated and characterized the Korean rose bitterling Rhodeus uyekii Luc7l cDNA, designated RuLuc7l. The RuLuc7l cDNA is 1,688 bp long and encodes a 364-amino-acid polypeptide containing serine/arginine-rich region at the C-terminus. The deduced RuLuc7l protein has high amino acid identity (71-97%) with those of other species including human. Phylogenetic analysis revealed that RuLUC7L clustered with fish LUC7L proteins. The expression of RuLuc7l mRNA was high in the brain, kidney, and stomach of Korean rose bitterling. Expression of the RuLuc7l mRNA was detected from 1 day post-fertilization (dpf) and moderately increased until 21 dpf during the early development. Further investigations are required to elucidate the functional role of RuLUC7L in myogenesis in R. uyekii.

Characterization of Chitin and Chitosan as a Biomedical Polymer (생체의료용 재료로써 키틴·키토산의 특성)

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2008
  • Development of various medical systems was accomplished through the progress of biotechnological method for therapy of human diseases. Furthermore, drug delivery systems have been investigated to carry the bioactive materials such as drug or gene in the body effectively. The most important thing in this system is to develop biomedical polymers having biocompatibility, biodegradability, and non-toxicity. Chitosan, a natural polymer, has been importantly considered as biomedical materials due to its good biocompatibility and various bio-active characteristics. Since the property of chitosan is differently explained according to the crystalline structures of chitin, the study for structural analysis of chitin has to proceed to apply as a biomaterial. From this point of view, this article introduced the analysis of crystalline structural of chitin, general property of chitosan and potential characteristics of low molecular weight water-soluble chitosan (LMWSC) as a biomaterials. Furthermore, chemical modification of LMWSC using various functional groups was also performed to enhance its bioavailability and emphasize their potential as drug delivery carriers (DDS).

Characterization of Erwinia tasmaniensis Isolated from Nuruk Producing Alginate Lyase (누룩으로부터 분리한 알긴산 분해 효소 생산 균주인 Erwinia tasmaniensis의 특성)

  • Kim, Hyun Ji;Lee, Sung-Mok;Kim, Sung-Koo;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.100-104
    • /
    • 2012
  • Oligosaccharides production showed various biological activities in vivo like functional foods and industrial materials utilized available within many practical applications which have obtained from the degradation of alginate. Alginate is rich in the main component of seaweeds especially the brown algae. We investigated what degrading alginate from seaweeds to make alginate oligosaccharides can utilize in various fields using enzyme secreting Erwinia tasmaniensis. In this study, we observed an optimal culture condition of E. tasmaniensis, and characteristics of alginate lyase secreting E. tasmaniensis. These bacteria, E. tasmaniensis, were isolated from Nuruk. In this case, a suitable growth factor for E. tasmaniensis was culture it for 36 h in broth media on concentration of 1.0% (w/v) alginate. The enzyme showed the highest level of alginate lyase activity when cultured on broth media containing 1.0% (w/v) sodium alginate for 72 h. Optimal condition of pH, temperature and duration time for alginate lyase activity were found to be pH 6.0, $20^{\circ}C$ and 60 min, respectively.

Characterization of ${\gamma}$-Polyglutamic Acid Produced from the Solid-state Fermentation of Soybean Milk Cake Using Bacillus sp.

  • Oh, Soo-Myung;Jang, Eun-Kyung;Seo, Ji-Hyun;Ryu, Mi-Jin;Lee, Sam-Pin
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.509-514
    • /
    • 2007
  • In this study, we optimized the production of ${\gamma}-polyglutamic$ acid (PGA) in soybean milk cakes (SMC) fermented with Bacillus subtilis GT-D and B. subtilis KU-A, to be utilized as a functional food ingredient. PGA production was dependent upon the glutamate content, fermentation time, and type of Bacillus sp. The consistencies of the SMCs fermented by B. subtilis GT-D and B. subtilis KU-A were highest after 36 hr of fermentation, and then decreased gradually. The SMC fermented by B. subtilis KU-A had a higher consistency than the SMC fermented by B. subtilis GT-D. In the presence of 10% defatted soy flour (DFS), 5% glutamate in the SMC was efficiently converted into polyglutamic acid (PGA) for 24 hr, indicating a conversion yield above 96%, but its conversion then decreased with higher concentrations of glutamate. The soluble solid content (mucilage) of the SMC fermented with B. subtilis KU-A was 9.5%(w/w), and composed of 65.6% PGA (Mw 1,536 kDa) and some polysaccharides. However, the SMC fermented with B. subtilis GT-D had a mucilage content of 7.8%(w/w), and was composed of 66.4% PGA (Mw 1,409 kDa), 11.5% levan, and some polysaccharides. The viscoelastic values of the mucilage obtained using B. subtilis KU-A were much higher than those of mucilage obtained using B. subtilis GT-D. Also, the G'-value (elastic modulus) was higher than the G"-value (viscous modulus).