• Title/Summary/Keyword: Functional blocks

Search Result 186, Processing Time 0.032 seconds

Synthesis, Properties and Applications of Polyamide Thermoplastic Elastomers (폴리아미드계 열가소성탄성체의 합성, 특성 및 응용)

  • Lee, Kang-Suk;Choi, Myung-Chan;Kim, Sung-Man;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.156-164
    • /
    • 2010
  • Thermoplastic elastomers (TPEs) exhibit both elastomeric behaviors at used temperature range and melt processibility. Polyamide based thermoplastic elastomers (TPAEs) are segmented block copolymers with hard blocks consisting of polyamide segments, while the soft blocks usually consist of flexible segments having a low glass transition temperature. The TPAE is one of the engineering TPEs possessing high thermal stability, excellent mechanical performances, chemical resistance and excellent processibility. And they showed wide range of physical and functional properties depending upon the structure of each segment and their relative contents and the hybridization with various inorganic particles. In this review, synthesis, properties, and possible applications of TPAEs are summarized.

A Fully Synthesizable Bluetooth Baseband Module for a System-on-a-Chip

  • Chun, Ik-Jae;Kim, Bo-Gwan;Park, In-Cheol
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.328-336
    • /
    • 2003
  • Bluetooth is a specification for short-range wireless communication using the 2.4 GHz ISM band. It emphasizes low complexity, low power, and low cost. This paper describes an area-efficient digital baseband module for wireless technology. For area-efficiency, we carefully consider hardware and software partitioning. We implement complex control tasks of the Bluetooth baseband layer protocols in software running on an embedded microcontroller. Hardware-efficient functions, such as low-level bitstream link control; host controller interfaces (HCIs), such as universal asynchronous receiver transmitter (UART) and universal serial bus (USB)interfaces; and audio Codec are performed by dedicated hardware blocks. Furthermore, we eliminate FIFOs for data buffering between hardware functional units. The design is done using fully synthesizable Verilog HDL to enhance the portability between process technologies so that our module can be easily integrated as an intellectual property core no system-on-a-chip (SoC) ASICs. A field programmable gate array (FPGA) prototype of this module was tested for functional verification and realtime operation of file and bitstream transfers between PCs. The module was fabricated in a $0.25-{\mu}m$ CMOS technology, the core size of which was only 2.79 $mm{\times}2.80mm$.

  • PDF

A Study on Spatial Connectivity of the European Block Type Housing in Urban Context (도시맥락적 측면에서 본 유럽 블록형 집합주택의 공간적 연결성 연구)

  • Kong, Eun-Mi;Kim, Young-Ook;Han, Kee-Jeong
    • Journal of the Korean housing association
    • /
    • v.22 no.1
    • /
    • pp.35-42
    • /
    • 2011
  • The objective of this study is to investigate the functional conformity based on the analysis of the spatial connectivity of block housing using space syntax. Three cases were selected which have important meanings in 1920s. The properties of spatial configuration were derived from an urban-context approach and without urban context analysis, and spatial connectivity and functional conformity were analyzed using references. The results of the study revealed that the arrangement of block housing were different from one another notwithstanding their similar layout characteristics. The relationships between urban streets and housing complexes were identified, and the public spaces were being arranged as semi-public spaces, whereas blocks as private spaces by separating functions. This study provides the implications for the planning of low rise-high density housings by means of analyzing the spatial connectivity of the spatial layout characteristics of European block housing, recognizing the relationships between urban communities and housing complexes.

An adaptive motion estimation based on the temporal subband analysis (시간축 서브밴드 해석을 이용한 적응적 움직임 추정에 관한 연구)

  • 임중곤;정재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1361-1369
    • /
    • 1996
  • Motion estimation is one of the key components for high quality video coding. In this paper, a new motion estimation scheme for MPEG-like video coder is suggested. The proposed temporally adaptive motion estimation scheme consists of five functional blocks: Temporal subband analysis (TSBA), extraction of temporal information, scene change detection (SCD), picture type replacement (PTR), and temporally adapted block matching algorithm (TABMA). Here all the functional components are based on the temporal subband analysis. In this papre, we applied the analysis part of subband decompostion to the temporal axis of moving picture sequence, newly defined the temporal activity distribution (TAD) and average TAD, and proposed the temporally adapted block matching algorithm, the scene change detection algorithm and picture type replacement algorithm which employed the results of the temporal subband analysis. A new block matching algorithm TABMA is capable of controlling the block matching area. According to the temporal activity distribution of objects, it allocates the search areas nonuniformly. The proposed SCD and PTR can prevent unavailable motion prediction for abrupt scene changes. Computer simulation results show that the proposed motion estimation scheme improve the quality of reconstructed sequence and reduces the number of block matching trials to 40% of the numbers of trials in conventional methods. The TSBA based scene change detection algorithm can detect the abruptly changed scenes in the intentionally combined sequence of this experiment without additional computations.

  • PDF

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

표면특성이 제어된 기능성 나노 입자의 전자 및 의공학적 응용

  • 박영준;이준영;김중현
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.54-55
    • /
    • 2002
  • The fabrication, characterization and manipulation of nanoparticle system brings together physics, chemistry, materials science and biology in an unprecedented way. Phenomena occurring in such systems are fundamental to the workings of electronic devices, but also to living organisms. The ability to fabricate the surface of nanoparticles Is essential in the further development of functional devices that incorporate nanoscale features. Even more essential is the ability to introduce a wide range of chemical and materials flexibility into these structures to build up more complex nanostructures that can ultimately rival biological nanosystems. In this respect, polymers are potentially ideal nanoscale building blocks because of their length scale, well-defined architecture, controlled synthesis, ease of processing and wide range of chemical functionality that can be incorporated. In this presentation, we will look at a number of promising polymer-based nanoparticle fabrication strategies that have been developed recently, with an emphasis on those techniques that incorporate nanostructured polymeric particles into electronic devices or biomedical applications. And functional nanoparticles deliberately designed using several powerful process methods and their application will be discussed. Nanostructured nanoparticles, what we called, implies dispersed colloids with the size ranged from several nanometers to hundreds of nanometer. They have extremely large surface area, thus it is very important to control the morphology or surface functionality fitted for adequate objectives and properties. Their properties should be controlled for various kind of bio-related technologies, such as immunomagnetic cell separation, drug delivery systems, labeling and identification of lymphocyte populations, extracorporeal and hemoperfusion systems, etc. Well-defined polymeric nanoparticles can be considered as smart bomb or MEMS.

  • PDF

Novel Fabrication of CdS Hollow Spheres Induced by Self-assembled Process

  • Choi, Kyoung-Hoon;Chae, Weon-Sik;Jung, Jin-Seung;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1118-1120
    • /
    • 2009
  • Micro-size CdS spheres of hollow shape were fabricated through the self-assembly of high density arrow-like nanorods. The synthesis of the CdS hollow spheres were accomplished in an aqueous solution of cadmium nitrate and triblock copolymer (Pluronic P123) at low temperature (80 ${^{\circ}C}$) through the slow release of S2- ions from thioacetamide. Morphology of the fabricated CdS hollow spheres was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The results indicate that the arrow-like CdS nanorods are simultaneously grown and attached each other to form the building units that become the spheres with hollow inside as a self-assembled process. The CdS spheres have a diameter of $2{\sim}3 {\mu}m$ and consist of the nanorods with a length of$\sim$800 nm. The nanocrystal building blocks have a hexagonal CdS structure.

A Study on a Tester System for the Next Generation Convergence Network (IP기반 차세대 통합네트워크를 위한 시험기 시스템 연구)

  • Lee, Kyou-Ho;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1947-1953
    • /
    • 2008
  • This paper studies a system design of testifying next generation convergence network. Next generation convergence network includes such elements as not only various gateway systems interworking with conventional PSTN(Public Switched Telephone Network) but also various protocols communicating between gateway systems and softswitches or gateway controllers. Discussed are an effective system solution to verify functionalities and performance of protocols professing. From such discussion, the study identifies functional blocks and operational flows required for establishing a test system, and then with a basis of these proposes a system architecture. Finally this paper presents system design results and its implemented functional details.

Optimization of Pipelined Discrete Wavelet Packet Transform Based on an Efficient Transpose Form and an Advanced Functional Sharing Technique

  • Nguyen, Hung-Ngoc;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.374-385
    • /
    • 2019
  • This paper presents an optimal implementation of a Daubechies-based pipelined discrete wavelet packet transform (DWPT) processor using finite impulse response (FIR) filter banks. The feed-forward pipelined (FFP) architecture is exploited for implementation of the DWPT on the field-programmable gate array (FPGA). The proposed DWPT is based on an efficient transpose form structure, thereby reducing its computational complexity by half of the system. Moreover, the efficiency of the design is further improved by using a canonical-signed digit-based binary expression (CSDBE) and advanced functional sharing (AFS) methods. In this work, the AFS technique is proposed to optimize the convolution of FIR filter banks for DWPT decomposition, which reduces the hardware resource utilization by not requiring any embedded digital signal processing (DSP) blocks. The proposed AFS and CSDBE-based DWPT system is embedded on the Virtex-7 FPGA board for testing. The proposed design is implemented as an intellectual property (IP) logic core that can easily be integrated into DSP systems for sub-band analysis. The achieved results conclude that the proposed method is very efficient in improving hardware resource utilization while maintaining accuracy of the result of DWPT.

An energy-efficient technique for mobile-wireless-sensor-network-based IoT

  • Singla, Jatin;Mahajan, Rita;Bagai, Deepak
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.389-399
    • /
    • 2022
  • Wireless sensor networks (WSNs) are one of the basic building blocks of Internet of Things (IoT) systems. However, the wireless sensing nodes in WSNs suffer from energy constraint issues because the replacement/recharging of the batteries of the nodes tends to be difficult. Furthermore, a number of realistic IoT scenarios, such as habitat and battlefield monitoring, contain mobile sensing elements, which makes the energy issues more critical. This research paper focuses on realistic WSN scenarios that involve mobile sensing elements with the aim of mitigating the attendant energy constraint issues using the concept of radio-frequency (RF) energy extraction. The proposed technique incorporates a cluster head election workflow for WSNs that includes mobile sensing elements capable of RF energy harvesting. The extensive simulation analysis demonstrated the higher efficacy of the proposed technique compared with the existing techniques in terms of residual energy, number of functional nodes, and network lifetime, with approximately 50% of the nodes found to be functional at the 4000th, 5000th, and 6000th rounds for the proposed technique with initial energies of 0.25, 0.5 and 1 J, respectively.