• 제목/요약/키워드: Functional applications

검색결과 1,461건 처리시간 0.027초

Classification via principal differential analysis

  • Jang, Eunseong;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • 제28권2호
    • /
    • pp.135-150
    • /
    • 2021
  • We propose principal differential analysis based classification methods. Computations of squared multiple correlation function (RSQ) and principal differential analysis (PDA) scores are reviewed; in addition, we combine principal differential analysis results with the logistic regression for binary classification. In the numerical study, we compare the principal differential analysis based classification methods with functional principal component analysis based classification. Various scenarios are considered in a simulation study, and principal differential analysis based classification methods classify the functional data well. Gene expression data is considered for real data analysis. We observe that the PDA score based method also performs well.

국내 특허분석을 통한 기능성이 적용된 의복의 기술 동향 (Technological Trend of Functional Clothing by Analysis of Korean Patent)

  • 김호정
    • 한국의류산업학회지
    • /
    • 제16권1호
    • /
    • pp.160-166
    • /
    • 2014
  • Patent and utility indicate international competitiveness in the knowledge-based society of the $21^{st}$century where both the quantity and quality of the nation's scientific intelligence and innovative technology represent key criteria to evaluate its strength. Thus, discerning the trends of patents is inevitable for further development. This research is centered on apprehending the technological current of the functional clothing of Korea, through an analysis of patents and utility models. The number of patent applications in Korea was low until the mid-1990s. However, it began to grow rapidly in the 2000s and the number of patents surpassed the number of utility starting in 2006. The technological level of invention in this field has been turned into a higher level. The IPC code with the strongest application was the field related to temperature controllable clothing (A41D 13/005), followed by surgeon or patient apparel related fields (A41D 13/12), and reflective or luminous safety devices (A41D 13/01).The main technological idea was to give functionality that could protect the human body from various hazards and represents the goal of various applied techniques. About 66% of domestic patent applications belong to individuals; however, the proportion of corporate or institutional applications(including universities) remains poor. Consequently, more systematic and long-term support for research on patents is required.

Two dimensional tin sulfide for photoelectric device

  • Patel, Malkeshkumar;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.389.1-389.1
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

An Overview of the Activated Carbon Fibers for Electrochemical Applications

  • Lee Gyoung-Ja;Pyun Su-Il
    • 전기화학회지
    • /
    • 제9권1호
    • /
    • pp.10-18
    • /
    • 2006
  • This article is concerned with the overview of the activated carbon fibers. Firstly, this review provides a comprehensive survey of the overall processes for the synthesis of the activated carbon fibers from the carbonaceous materials. Subsequently, the physicochemical properties such as pore structures and surface oxygen functional groups of the activated carbon fibers were discussed in detail. Finally, as electrochemical applications of the activated carbon fibers to electrode materials for electric double-layer capacitor (EDLC), the electrochemical characteristics of the activated carbon fiber electrodes and the various methods to improve the capacitance and rate capability were introduced. In particular, the effect of pore length distribution (PLD) on kinetics of double-layer charging/discharging was discussed based upon the experimental and theoretical results in our work. And then we discussed in detail the applications of the activated carbon fibers to adsorbent materials for purification of liquid and gas.

FIXED POINT THEOREMS FOR THE MODIFIED SIMULATION FUNCTION AND APPLICATIONS TO FRACTIONAL ECONOMICS SYSTEMS

  • Nashine, Hemant Kumar;Ibrahim, Rabha W.;Cho, Yeol Je;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.137-155
    • /
    • 2021
  • In this paper, first, we prove some common fixed point theorems for the generalized contraction condition under newly defined modified simulation function which generalize and include many results in the literature. Second, we give two numerical examples with graphical representations for verifying the proposed results. Third, we discuss and study a set of common fixed point theorems for two pairs (finite families) of self-mappings. Finally, we give some applications of our results in discrete and functional fractional economic systems.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • 김병성;이종운;손기석;최민수;이동진;허근;남인철;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

Exploring COVID-19 in mainland China during the lockdown of Wuhan via functional data analysis

  • Li, Xing;Zhang, Panpan;Feng, Qunqiang
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.103-125
    • /
    • 2022
  • In this paper, we analyze the time series data of the case and death counts of COVID-19 that broke out in China in December, 2019. The study period is during the lockdown of Wuhan. We exploit functional data analysis methods to analyze the collected time series data. The analysis is divided into three parts. First, the functional principal component analysis is conducted to investigate the modes of variation. Second, we carry out the functional canonical correlation analysis to explore the relationship between confirmed and death cases. Finally, we utilize a clustering method based on the Expectation-Maximization (EM) algorithm to run the cluster analysis on the counts of confirmed cases, where the number of clusters is determined via a cross-validation approach. Besides, we compare the clustering results with some migration data available to the public.