• 제목/요약/키워드: Functional activation

검색결과 925건 처리시간 0.028초

A17075합금의 고온 크리프 활성화에너지의 상태의존성 (State Dependence of Activation Energies for High Temperature Creep of A17075 Alloy)

  • 조용이;김희송
    • 대한기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.131-140
    • /
    • 1993
  • 본 연구에서는 A17075의 활성화에너지의 각 변수 의존성을 온도 보상시간과 Zener-Hollomon 개변수를 써러 조사하고 가장 신빙성이 있는 Miller에 의한 현상론적 크리프식을 조사 연구하였다.

A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes

  • Kim, Jung-Ae;Park, In-Soo;Seo, Ji-Hye;Lee, Jung-Joon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권2호
    • /
    • pp.81-86
    • /
    • 2014
  • The process parameter in optimized KOH alkali activation of soft carbon series coke material in high purity was set with DOE experiments design. The activated carbon was produced by performing the activation process based on the set process parameters. The specific surface area was measured and pore size was analyzed by $N_2$ absorption method for the produced activated carbon. The surface functional group was analyzed by Boehm method and metal impurities were analyzed by XRF method. The specific surface area was increased over 2,000 $m^2/g$ as the mixing ratio of activation agent increased. The micro pores in $5{\sim}15{\AA}$ and surface functional group under 0.4 meq/g were obtained. The contents of the metal impurity in activated carbon which is the factor for reducing the electrochemical characteristics was reduced less than 100 ppm through the cleansing process optimization. The electrochemical characteristics of activated carbon in 38.5 F/g and 26.6 F/cc were checked through the impedance measuring with cyclic voltammetry scan rate in 50~300 mV/s and frequency in 10 mHz ~100 kHz. The activated carbon was made in the optimized activation process conditions of activation time in 40 minutes, mixing ratio of activation agent in 4.5 : 1.0 and heat treatment temperature over $650^{\circ}C$.

Cl--Channel Is Essential for LDL-induced Cell Proliferation via the Activation of Erk1/2 and PI3K/Akt and the Upregulation of Egr-1 in Human Aortic Smooth Muscle Cells

  • Heo, Kyung-Sun;Ryoo, Sung-Woo;Kim, Lila;Nam, Miyoung;Baek, Seung-Tae;Lee, Hyemi;Lee, Ah-Reum;Park, Song-Kyu;Park, Youngwoo;Myung, Chang-Seon;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.468-473
    • /
    • 2008
  • Low-density lipoprotein (LDL) induces cell proliferation in human aortic smooth muscle cells (hAoSMCs), which may be involved in atherogenesis and intimal hyperplasia. Recent studies have demonstrated that $Cl^-$ channels are related to vessel cell proliferation induced by a variety of stimuli. In this study, we investigated a potential role of $Cl^-$ channels in the signaling pathway of LDL effects on hAoSMC proliferation with a focus on the activation of Erk1/2-PI3K/Akt and the subsequent upregulation of Egr-1. $Cl^-$ channel blockers, DIDS, but neither NPPB nor Furosemide, completely abolished the LDL-induced DNA synthesis and cell proliferation. Moreover, DIDS, but not NPPB, significantly decreased LDL-stimulated $Cl^-$ concentration, as judged by flow cytometry analysis using MQAE as a $Cl^-$-detection dye. DIDS pretreatment completely abolished the activation of Erk1/2 and PI3K/Akt in a dose-dependent manner that is the hallmark of LDL activation, as judged by Western blot and proliferation assays. Moreover, pretreatment with DIDS ($Cl^-$ channel blockers) but not LY294002 (PI3K inhibitors) completely abolished the LDL-induced upregulation of Egr-1 to the same extent as PD98059 (MEK inhibitors to inhibit Erk), as judged by Western blot and luciferase reporter assays. This is the first report, to our knowledge, that DIDS-sensitive $Cl^-$-channels play a key role in the LDL-induced cell proliferation of hAoSMCs via the activation of Erk1/2 and PI3K/Akt and the upregulation of Egr-1.

승모근과 전거근 강화운동이 기능적 어깨충돌증후군을 가진 척수손상 환자의 통증과 근 활성도에 미치는 영향 (The Effects of Trapezius and Serratus Anterior Strengthening Exercise on Pain and Muscle Activation in Spinal Cord Injury Patients with Functional Shoulder Impingement Syndrome)

  • 김상철;이영민;신규현
    • PNF and Movement
    • /
    • 제16권1호
    • /
    • pp.33-42
    • /
    • 2018
  • Purpose: The aim of this study was to investigate the effects of trapezius and serratus anterior strengthening exercise on the shoulder pain and muscle activation of patients with spinal cord injury and functional shoulder impingement syndrome. Methods: The study consisted of 10 patients with spinal cord injury who were hospitalized in Rehabilitation Hospital U, Uijeongbu, South Korea. The exercise was implemented three times a week for 10 weeks. In each session, the subjects performed one of a total of five types of exercise at mid-level intensity. The shoulder pain and disability index (SPADI) was used to evaluate the patients before and after the intervention. The muscle activation of the upper trapezius, middle trapezius, lower trapezius, and anterior serratus muscle was assessed by surface electromyography (EMG) at the beginning of the experiment and 10 weeks later. Wilcoxon's singed-rank test was conducted to determine differences in the pain index and muscle activation before and after the exercise. The level of statistical significance was set at ${\alpha}=0.05$. Results: SPADI scores significantly decreased after the exercise (p<0.05). In comparisons of muscle activation, there was a significant improvement in the upper trapezius at $60^{\circ}$ shoulder joint flexion (p<0.05). There was no significant improvement at $90^{\circ}$ shoulder joint flexion. The middle trapezius showed a significant improvement at $120^{\circ}$ shoulder joint flexion (p<0.05). Conclusion: Trapezius and serratus anterior strengthening exercise reduced pain in spinal cord injury patients with functional shoulder impingement syndrome. The decreased muscle activation of upper trapezius and increased muscle activation of the anterior serratus muscle at $60^{\circ}$ shoulder joint flexion point to positive effects of the exercise on supraduction of the scapula.

CD29 및 CD98 활성 매개에 의한 Jurkat T 세포의 유착과 그 활용 (Cell-cell Adhesion of Jurkat T Cells Induced by CD29 and CD98 Activation and its Application)

  • 김병훈;조재열
    • 약학회지
    • /
    • 제53권3호
    • /
    • pp.119-124
    • /
    • 2009
  • Cell-cell adhesion managed by various adhesion molecules plays an important role in regulating functional activation of cells. This event mediates attachment of inflammatory cells to endothelial cells, interaction of antigen-presenting cells with T cells and metastatic adherence of cancer cells to epithelial tissue cells. Therefore, this cellular response is considered as one of therapeutic target to treat various cancers and inflammatory diseases. To develop proper model for evaluation of functional activation of adhesion molecules, the ability of U937 and Jurkat T cells responsive to various adhesion inducers such as phorbal-12-myristate-13-acetate (PMA), staurosporin and monoclonal antibodies to CD29, CD43 and CD98 was investigated using quantitative cell-cell adhesion assay. U937 cells made more cell-cell clusters by the treatment of antibodies to CD29 and CD43 than Jurkat T cells, while Jurkat T cells exhibited increased cell-cell adhesion ability in CD98 antibody treatment. In agreement, the surface levels of CD29 and CD98 were highly observed in U937 and Jurkat T cells, respectively. Therefore, our data suggest that Jurkat T and U937 cells can be used for model system to evaluate functional activation of adhesion molecules such as CD29 and CD98.

Brain Activation Pattern and Functional Connectivity Network during Experimental Design on the Biological Phenomena

  • Lee, Il-Sun;Lee, Jun-Ki;Kwon, Yong-Ju
    • 한국과학교육학회지
    • /
    • 제29권3호
    • /
    • pp.348-358
    • /
    • 2009
  • The purpose of this study was to investigate brain activation pattern and functional connectivity network during experimental design on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate participants' brain activities during the tasks, 3.0T fMRI system with the block experimental-design was used to measure BOLD signals of their brain and SPM2 software package was applied to analyze the acquired initial image data from the fMRI system. According to the analyzed data, superior, middle and inferior frontal gyrus, superior and inferior parietal lobule, fusiform gyrus, lingual gyrus, and bilateral cerebellum were significantly activated during participants' carrying-out experimental design. The network model was consisting of six nodes (ROIs) and its six connections. These results suggested the notion that the activation and connections of these regions mean that experimental design process couldn't succeed just a memory retrieval process. These results enable the scientific experimental design process to be examined from the cognitive neuroscience perspective, and may be used as a basis for developing a teaching-learning program for scientific experimental design such as brain-based science education curriculum.

Brain activation pattern and functional connectivity network during classification on the living organisms

  • Byeon, Jung-Ho;Lee, Jun-Ki;Kwon, Yong-Ju
    • 한국과학교육학회지
    • /
    • 제29권7호
    • /
    • pp.751-758
    • /
    • 2009
  • The purpose of this study was to investigate brain activation pattern and functional connectivity network during classification on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate participants' brain activities during the tasks, 3.0T fMRI system with the block experimental-design was used to measure BOLD signals of their brain. According to the analyzed data, superior, middle and inferior frontal gyrus, superior and inferior parietal lobule, fusiform gyrus, lingual gyrus, and bilateral cerebellum were significantly activated during participants' carrying-out classification. The network model was consisting of six nodes (ROIs) and its fourteen connections. These results suggested the notion that the activation and connections of these regions mean that classification is consist of two sub-network systems (top-down and bottom-up related) and it functioning reciprocally. These results enable the examination of the scientific classification process from the cognitive neuroscience perspective, and may be used as basic materials for developing a teaching-learning program for scientific classification such as brain-based science education curriculum in the science classrooms.

Role of KOH in the One-Stage KOH Activation of Cellulosic Biomass

  • Oh, Gyu-Hwan;Yun, Chang-Hun;Park, Chong-Rae
    • Carbon letters
    • /
    • 제4권4호
    • /
    • pp.180-184
    • /
    • 2003
  • The role of KOH in the one-stage KOH-activation of rice straws was studied using FTIR, XPS, TGA, and DTG techniques. It was found that at the impregnation, KOH extracts to some extent the lignin component from rice straw and reacts with hydroxyl groups. On heat-treatment, the impregnated KOH facilitates intermolecular condensation reaction on one hand but retards the thermal degradation of cellulose molecules on the other hand. The oxygen-containing surface functional groups newly created by oxidation of KOH may facilitate the bulk, not controlled, consumption of carbon atoms so that the effective porosities may not be able to be developed by the one-stage activation process.

  • PDF

Effect of Ankle Stabilization Training Using Biofeedback on Balance Ability and Lower Limb Muscle Activity in Football Players with Functional Ankle Instability

  • Kim, Je-Ho;Uhm, Yo-Han
    • The Journal of Korean Physical Therapy
    • /
    • 제28권3호
    • /
    • pp.189-194
    • /
    • 2016
  • Purpose: This study focuses on influence of ankle stabilization training on balance ability and lower limb muscle activation of soccer player with functional ankle instability. Methods: Subjects were grouped into ankle stabilization training group using biofeedback comprised of 15 subjects and general exercise group of 15. The training was conducted for 30 minutes, 3 times a week for 8 weeks in total. All 30 football players conducted plyometric training for 30 minutes before main training. To evaluate balance ability, biorescure was used to measure whole path length and surface area and surface electromyography (EMG) system was used to measure tibialis anterior, tibialis posterior, and soleus to evaluate lower limb muscle activation. Results: The experiment group showed significant difference to the comparison group in regard of whole path length and surface area which represents balancing capability and muscle activation of tibialis anterior, tibialis posterior, and soleus. Conclusion: Therefore, ankle stabilization training using biofeedback is more effective in enhancing balance ability and lower limb muscle activation than general exercise.

다중 기능성 그룹을 포함하는 마이크로포어 탄소의 합성 및 전기화학적 특성 (Synthesis of microporous carbons containing multi-functional groups and their electrochemical performance)

  • 김기석;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.94.2-94.2
    • /
    • 2011
  • In this work, multi-functional groups, i.e., nitrogen and oxygen, contained microporous carbons (MF-MCs) were prepared by the one step carbonization of the poly(vinylidene chloride-co-acrylonitrile-co-methyl methacryalte) (PVDC-AN-MMA) without activation. The electrochemical performance of MF-MCs was investigated as a function of carbonization temperature. It was found that MF-MCs had a high specific surface area over $800m^2/g$ without additional activation, resulting from the micropore's formation by the release of chlorine groups. In addition, although functional groups decreased, specific surface area was increased with increasing carbonization temperature, leading to the enhanced electrochemical performance. The pore size of the carbon distributed mainly in small micropore of 1.5 to 2 nm, which was idal for aqueous electrolyte. Indeed, the unique microstructure features, i.e. high specific surface area and optimized pore size provided high energy storage capability of MF-MCs. These results indicated that the microporous features of MF-MCs lead to feasible electron transfer during charge/discharge duration and the presence of nitrogen and oxygen groups on the MF-MCs electrode led to a pseudocapacitive reaction.

  • PDF