• Title/Summary/Keyword: Functional activation

Search Result 926, Processing Time 0.033 seconds

Neurophysiological and Neuroimaging Characteristics of Depression and Anxiety (우울과 불안의 뇌 기능 - EEG, ERP, Functional Neuroimaging, HRV 소견을 중심으로 -)

  • Choo, Jung-Suk;Lee, Seung-Hwan;Chung, Young-Cho
    • Anxiety and mood
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2008
  • The purpose of this review was to investigate the neurophysiological and neuroimaging characteristics of patients with depression and anxiety reported in previous studies. A literature search was conducted using Medline and psychiatric textbooks. "Electroencephalography (EEG)", "Event Related Potentials (ERP)", "functional neuroimaging", "heart rate variability (HRV)" and "depression or anxiety" were used as key words. A physiological finding indicated that there was a higher degree of relativity with regards to prefrontal dysfunction in patients with depression. Right prefrontal lobe hyperactivity and left prefrontal hypoactivity were consistently observed, and abnormalities were observed in other regions (ACC, hippocampus, amygdala, etc.). Therefore, dysfunctions in these areas are related to depressive symptoms. In patients with anxiety disorder, each emotional condition showed specific activation patterns in different brain regions, such as the prefrontal cortex, occipital lobe, temporal lobe, hippocampus, and limbic system, including the amygdala. However, in the majority of patients with anxiety disorder, the degree of activation was higher in the right hemisphere than in the left hemisphere. The current data supports that there is a difference in brain dysfunction characteristics between depression and anxiety and that the different activations of various brain regions would play a significant role in the pathophysiology of depression and anxiety disorder.

  • PDF

b0 Dependent Neuronal Activation in the Diffusion-Based Functional MRI

  • Kim, Hyug-Gi;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • Purpose: To develop a new diffusion-based functional MRI (fMRI) sequence to generate apparent diffusion coefficient (ADC) maps in single excitation and evaluate the contribution of b0 signal on neuronal changes. Materials and Methods: A diffusion-based fMRI sequence was designed with single measurement that can acquire images of three directions at a time, obtaining $b=0s/mm^2$ during the first baseline condition (b0_b), followed by 107 diffusion-weighted imaging (DWI) with $b=600s/mm^2$ during the baseline and visual stimulation conditions, and another $b=0s/mm^2$ during the last activation condition (b0_a). ADC was mapped in three different ways: 1) using b0_b (ADC_b) for all time points, 2) using b0_a (ADC_a) for all time points, and 3) using b0_b and b0_a (ADC_ba) for baseline and stimulation scans, respectively. The fMRI studies were conducted on the brains of 16 young healthy volunteers using visual stimulations in a 3T MRI system. In addition, the blood oxygen level dependent (BOLD) fMRI was also acquired to compare it with diffusion-based fMRI. A sample t-test was used to investigate the voxel-wise average between the subjects. Results: The BOLD data consisted of only activated voxels. However, ADC_ba data was observed in both deactivated and activated voxels. There were no statistically significant activated or deactivated voxels for DWI, ADC_b, and ADC_a. Conclusions: With the new sequence, neuronal activations can be mapped with visual stimulation as compared to the baseline condition in several areas in the brain. We showed that ADC should be mapped using both DWI and b0 images acquired with the same conditions.

The Evaluation of Cerebral Executive Function Using Functional MRI (기능적 자기공명영상기법을 이용한 대뇌의 집행기능 평가)

  • Eun, Sung Jong;Gook, Jin Seon;Kim, Jeong Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.305-311
    • /
    • 2013
  • This study involves an experiment using functional magnetic resonance imaging(fMRI) to delineate brain activation for execution functional performance. Participates to this experiment of the normal adult (man 4, woman 6) of 10 people, is not inserts the metal all closed phobia and 24.5 year-old average ages which the operating surgeon experience which are not they were. The subject for a functional MRI experiment word -color test prosecuting attorney subject rightly at magnetic pole presentation time of 30 first editions and after presenting, uses SPM 99 programs and the image realignment, after executing a standardization (nomalization), a difference which the signal burglar considers the timely order as lattice does, pixel each image will count there probably is, in order to examine rest and active crossroad dividing independence sample t-test (p<.05). Overlapped in this standard anatomic image and got a brain activation image from level of significance 95%. With functional MRI resultant execution function inside being relation, the prefrontal lobe, anterior cingulate gyrus, parietal lobe, orbitofrontal gyrus, temporal lobe, parietal lobe was activated. The execution function promotes a recovery major role from occupational therapy, understanding about the damage mechanism is important. When confirms the brain active area which accomplishes an execution function brain plasticity develops the cognitive therapeutic method which is effective increases usefully very, will be used.

Neuro-scientific Approach to Fashion Visual Merchandising -Comparison of Brain Activation to Positive/Negative VM in Fashion Store Using fNIRS- (패션 비주얼머천다이징의 뇌 과학적 접근 -fNIRS를 이용한 패션매장의 긍정적/부정적 VM에 대한 뇌 활성 비교-)

  • Kim, Hyoung Suk;Lee, Jin Hwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.2
    • /
    • pp.254-265
    • /
    • 2017
  • This study examines the possibility of a neuro-scientific approach to fashion Visual Merchandising (VM), by researching the brain activation of customers about fashion stores in terms of VM. Study subjects were in 20's-30's residing in Busan and ten ordinary person or fashion industry related individuals, it measures the change of cerebral blood flow on positive/negative photo stimulus in terms of VM using a functional Near Infrared Spectroscopy (fNIRS) device, and then compared the brain activation to the difference of the fashion store VM. Photo stimuli utilized in the experiment were selected through a preliminary study in advance. The results of this study are as follows. First, the brain activation was found in all 16 channels of stimulus ranges of fashion store VM regardless of positive/negative stimulus. This means that the VM of fashion store causes changes to the cerebral blood flow of consumers, which implies that consumer behavior can be affected by store VM. It also shows that the brain is more active in negative VM stimulus than positive VM despite slight differences in the subjects. In terms of VM, this suggests that the negative factors of fashion stores have a greater effect on the brains of consumers compared to the positive factors. Second, the reaction of the brain channel is different according to the positive/negative VM stimulus of the fashion store by product group and confirms that positive/negative VM stimulus can be distinguished by brain-reaction for the three product groups except for the underwear group among four product groups (men's wear store, women's wear store, underwear store, and sportswear store). The results indicate that more objective scientific measure and decision-making are possible through neuro-science in the strategic execution of VM. This study verified the possibility for a neuro-scientific approach to fashion VM; therefore, there are expectations for the various activation of interdisciplinary research and subsequent development of VM that utilize neuroscience in fashion marketing.

Nuclear Localization of Chfr Is Crucial for Its Checkpoint Function

  • Kwon, Young Eun;Kim, Ye Seul;Oh, Young Mi;Seol, Jae Hong
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.359-363
    • /
    • 2009
  • Chfr, a checkpoint with FHA and RING finger domains, plays an important role in cell cycle progression and tumor suppression. Chfr possesses the E3 ubiquitin ligase activity and stimulates the formation of polyubiquitin chains by Ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins, including Plk1 and Aurora A. While Chfr is a nuclear protein that functions within the cell nucleus, how Chfr is localized in the nucleus has not been clearly demonstrated. Here, we show that nuclear localization of Chfr is mediated by nuclear localization signal (NLS) sequences. To reveal the signal sequences responsible for nuclear localization, a short lysine-rich stretch (KKK) at amino acid residues 257-259 was replaced with alanine, which completely abolished nuclear localization. Moreover, we show that nuclear localization of Chfr is essential for its checkpoint function but not for its stability. Thus, our results suggest that NLS-mediated nuclear localization of Chfr leads to its accumulation within the nucleus, which may be important in the regulation of Chfr activation and Chfr-mediated cellular processes, including cell cycle progression and tumor suppression.

Rice functional genomics using T-DNA mutants (T-DNA 돌연변이를 이용한 벼 기능 유전체 연구)

  • Ryu, Hak-Seung;Ryoo, Na-Yeon;Jung, Ki-Hong;An, Gynheung;Jeon, Jong-Seong
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.133-143
    • /
    • 2010
  • Rice (Oryza sativa) is a major cereal crop that has been developed as a monocot model species. In past decades rice researchers have established valuable resources for functional genomics in rice, such as complete genome sequencing, high-density genetic maps, a full length cDNA database, genome-wide transcriptome data, and a large number of mutants. Of these, rice mutant lines are very important to definitively determine functions of genes associated with valuable agronomic traits. In this review we summarize the progress of functional genomics approaches in rice using T-DNA mutants.

Functional Brain Mapping Using $H_2^{15}O$ Positron Emission Tomography ( II ): Mapping of Human Working Memory ($H_2^{15}O$ 양전자단층촬영술을 이용한 뇌기능 지도 작성(II): 작업 기억의 지도 작성)

  • Lee, Jae-Sung;Lee, Dong-Soo;Lee, Sang-Kun;Nam, Hyun-Woo;Kim, Seok-Ki;Park, Kwang-Suk;Jeong, Jae-Min;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.3
    • /
    • pp.238-249
    • /
    • 1998
  • Purpose: To localize and compare the neural basis of verbal and visual human working memory, we performed functional activation study using $H_2^{15}O$ PET. Materials and Methods: Repeated $H_2^{15}O$ PET scans with one control and three different activation tasks were performed on six right-handed normal volunteers. Each activation task was composed of 13 match-ing trials. On each trial, four targets, a fixation dot and a probe were presented sequentially and subject's task was to press a response button to indicate whether or not the probe was one of the previous targets. Short meaningful Korean words, simple drawings and monochromic pictures of human faces were used as matching objects for verbal or visual memory. All the images were spatially normalized and the differences between control and activation states were statistically analyzed using SPM96. Results: Statistical analysis of verbal memory activation with short words showed activation in the left Broca's area, promoter cortex, cerebellum and right cingulate gyrus. In verbal memory with simple drawings, activation was shown in the larger regions including where activated with short words and left superior temporal cortex, basal ganglia, thalamus, prefrontal cortex, anterior portion of right superior temporal gyrus and right infero-lateral frontal cortex. On the other hand, the visual memory task activated predominantly right-sided structures, especially inferior frontal cortex, supplementary motor cortex and superior parietal cortex. Conclusion: The results are consistent with the hypothesis of the laterality and dissociation of the verbal and visual working memory from the invasive electrophysiological studies and emphasize the pivotal role of frontal cortex and cingulate gyrus in working memory system.

  • PDF

Cerebellar Activation Related to Various Tasks Using fMRI (다양한 임무 부여시 기능적 자기공명영상에서 관찰된 소뇌의 활성화)

  • Hwang, Seung-Bae;Kwak, Hyo-Sung;Lee, Sang-Yong;Jin, Gong-Yong;Han, Young-Min;Kim, Young-Kon;Chung, Gyung-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • Purpose : Although it's been known for half a century that unique structures have evolved in the cerebellum and they then became greatly enlarged in the human brain, the function of these structures still remains unknown. The purpose of this study was to assess cerebellar activation during motor, sensory, word generation, listening comprehension, and working memory tasks with using functional magnetic resonance imaging (fMRI). Materials and Methods : Eleven healthy right-handed subjects (Male: female, 6:5, mean age: 27.4years) were imaged on a Siemens 1.5T scanner. Whole brain functional maps were acquired using BOLD EPI sequences in the axial plane. Each paradigm consisted of five epochs of activation vs. the control condition. The activation tasks consisted of left finger complex movement, sensory stimulation of the left hand, word generation, listening comprehension, and working memory tasks. The reference function was a boxcar waveform. The activation maps were thresholded at p = 0.001. SPM 5 evaluated the activated areas and responses within the cerebellum. Results : Cerebellar activation was observed on motor task, word generation task, and working memory task. There were 949 activated areas and the mean fitted and adjusted response was 0.68 during the motor task. There were 319 activated areas and the mean fitted and adjusted response was 0.15 during the word generation task. There were 330 activated areas and the mean fitted and adjusted response was 0.26 during the working memory task. Conclusion : Our results suggest that the cerebellum is involved in a variety of functional tasks, including motor, word generation, and working memory tasks. However, during the motor task, the cerebellum showed a large activated area and a high response. Cerebellar function can be evaluated by fMRI.

  • PDF

The Effects of Game-Based Weight Bearing Balance Training on Phase Sit to Stand to Sit and Functional Standing Performance Stroke Patients (게임기반 체중지지 균형훈련이 뇌졸중 환자의 단계별 일어서고 앉기 동작과 기능적 일어서기 수행력에 미치는 효과)

  • Yang, Daejung;Uhm, Yohan
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.4
    • /
    • pp.21-30
    • /
    • 2017
  • Purpose : This research intends to identify the effects of game-based weight bearing exercises on balance, muscular activation, sit to stand to sit motions of stroke patients. Method : 30 patients who were diagnosed as hemiplegia by stroke less in than a year were sampled and they were classified into two group, one of which was game-based weight bearing balance exercise group, and the other was functional weight bearing exercise group. 15 people were randomly selected for each group. Each exercise was coordinated by this research for 8 weeks, 5 days a week. 3D motion analyzer was used to measure the sit to stand to sit motions and a stopwatch was used to measure the time for stand-up motions for 5 times. Result : In terms of analyzing sit to stand to sit motions by phases, game-based weight bearing balance exercise group showed significant reduction compared to functional weight-bearing exercise group in phase I, II, III, IV and total time. In terms of functional stand-up performance analysis, game-based weight bearing balance exercise group showed significant reduction compared to functional weight-bearing exercise group in 5 times stand-up examination. Conclusion : It was verified that game-based weight bearing balance exercise had positive impact on function recovery of stroke patients by enhancing sit to stand to sit capabilities. It is considered that game-based exercise was an effective intermediary for functional improvement of stroke patients, while also inducing consistent and voluntary participation by causing interest and motivation.

Preparation and Thermal Performance of Fullerene-Based Lead Salt

  • Guan, Hui-Juan;Peng, Ru-Fang;Jin, Bo;Liang, Hua;Zhao, Feng-Qi;Bu, Xing-Bing;Han, Wen-Jing;Chu, Shi-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2257-2262
    • /
    • 2014
  • $C_{60}$ is widely investigated because of its unique structure. But its applications in solid propellant seem to be relatively neglected. $C_{60}$ has more outstanding features than carbon black which is widely used as a catalyst ingredient of solid propellant. To combine the advantages of fullerene and lead salts, another good composite in propellant catalysts, we synthesized a kind of fullerene phenylalanine lead salt (FPL) and explored its thermal performances by differential thermal analysis (DTA) and thermogravimetry analysis (TGA). The results show it undergoes four exothermic processes started from 408 K. Combined TGA and X-ray diffractometer (XRD), the decomposition mechanism of FPL was derived by TG-IR and comparing IR spectra of FPL and its residues after burned to $327^{\circ}C$, $376^{\circ}C$ and $424^{\circ}C$, respectively. Effect of FPL on the decomposition characteristic of hexogen (RDX), a type of explosive in propellant, has been investigated using DTA at different heating rate, which shows the decomposition temperatures of the explosive are all reduced by more than 20 K. The corresponding activation energy ($E_a$) is decreased by $30kJ{\cdot}mol^{-1}$. So FPL has potential application as a combustion catalyst in solid propellant.