• Title/Summary/Keyword: Functional Synthesis

Search Result 901, Processing Time 0.032 seconds

A Minimal Resource High-Level Synthesis Algorithm for Low Power Design Automation (저 전력 설계 자동화를 위한 최소 자원 상위 레벨 합성 알고리즘)

  • Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.95-99
    • /
    • 2008
  • This paper proposes a new minimal resource high-level synthesis algorithm for low power design automation. The proposed algorithm executes an efficient approach to minimize the power consumption of the functional units in a circuit during the high level synthesis. In this paper, we visit all control steps one by one to reduce the switching activity in CDFG. The register sharing algorithm determines the minimum register after the life time analysis of all variable. According to property of input signal for functional unit, the proposed method visits all control step one by one and determines the resource allocation with minimal power consumption at each control step in a greedy fashion. The effect of the proposed algorithm has been proved through various filter benchmark to adopt a new scheduling and allocation algorithm considering the low rover.

  • PDF

A Study on Glycoside Synthesis Using Alginate-enclosed Microspheres (Alginate-enclosed Microspheres를 이용한 배당체 합성에 관한 연구)

  • 김해성;김우식
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.320-327
    • /
    • 1993
  • Latex microspheres of styrene/acryl copolymer with acrylamide functional group were used for the stable covalent immobilization of an enzyme applicable for enzymatic synthesis of glycoside. The latex microspheres were coated with polyethyleneimine to establish structural and functional properties relevant to the covalent Immobilization with a high retention of activity. Polythyleneimine-coated microspheres satisfactorily immobilized the invertase for methyl fructoside synthesis, and model reaction were formed into alginate-enclosed microspheres biocatalyst. Using the alginate-enclosed microspheres biocatalyst, the yield of model glycoside was obtained as high as 52.2% at concentration of aqueous 30%(v/v) methanol and 0.291mo1/1 sucrose solution with 2U/ml of activity. The present study showed that the latex microspheres were successfully applied to enzymatic synthesis of glycoside.

  • PDF

Characteristics of the Surface Coating Layer of Ti5Si3 Intermetallic Compound Obtained by Shock Compaction and Reaction Synthesis Through Underwater Shock Compression (수중충격파를 이용하여 충격고화와 반응합성으로 제조된 Ti5Si3 금속간 화합물의 표면코팅 층의 특성에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • The objective of the present study is to investigate the increase in the functional characteristics of a substrate by the formation of a thin coating layer. Thin coating layers of $Ti_5Si_3$ have high potential because $Ti_5Si_3$ exhibits high hardness. Shock induced reaction synthesis is an attractive fabrication technique to synthesize uniform coating layer by controlling the shock wave. Ti and Si powders to form $Ti_5Si_3$ using shock induced reaction synthesis, were mixed using high-energy ball mill into small scale. The positive effect of this technique is highly functional coating layer on the substrate due to ultra fine substructure, which improves the bonding strength. These materials are in great demand as heat resisting, structural and corrosion resistant materials. Thin $Ti_5Si_3$ coating layer was successfully recovered and showed high Vickers' hardness (Hv=1183). Characterization studies on microstructure revealed a fairly uniform distribution of powders with good interfacial integrity between the powders and the substrate.

Nanoparticles Synthesis and Modification using Solution Plasma Process

  • Mun, Mu Kyeom;Lee, Won Oh;Park, Jin Woo;Kim, Doo San;Yeom, Geun Young;Kim, Dong Woo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.164-173
    • /
    • 2017
  • Across the most industry, the demand for nanoparticles is increasing. Therefore, many studies have been carried out to synthesize nanoparticles using various methods. The aim of this paper is to introduce an industry-applicable as well as financially and environmentally effective solution plasma process. The solution plasma process involves fewer chemicals than the traditional kit, and can be used to replace many of the chemical agents employed in previous synthesis of nanoparticles into plasma. In this study, this process is compared to the wet-reaction process that has thus far been widely used in the most industry. Furthermore, the solution plasma process has been classified into four different types (in-solution, out of solution, direct type, and remote type), according to its plasma occurrence position and plasma types. Thus, the source of radicals, nanoparticle synthesis, and modification methods are explained for each design. Lastly, unlike nanoparticles with hydrophilic functional groups that are made inside the solution, a nanoparticle synthesis and modification method to create a hydrophobic functional group is also proposed.

Functional Analysis of the Invariant Residue G791 of Escherichia coli 16S rRNA

  • Song, Woo-Seok;Kim, Hong-Man;Kim, Jae-Hong;Sim, Se-Hoon;Ryou, Sang-Mi;Kim, Sang-Goo;Cha, Chang-Jun;Cunningham, Philip R.;Bae, Jee-Hyeon;Lee, Kang-Seok
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.418-421
    • /
    • 2007
  • The nucleotide at position 791(G791) of E. coli 16S rRNA was previously identified as an invariant residue for ribosomal function. In order to characterize the functional role of G791, base substitutions were introduced at this position, and mutant ribosomes were analyzed with regard to their protein synthesis ability, via the use of a specialized ribosome system. These ribosomal RNA mutations attenuated the ability of ribosomes to conduct protein synthesis by more than 65%. A transition mutation (G to A) exerted a moderate effect on ribosomal function, whereas a transversion mutation (G to C or U) resulted in a loss of protein synthesis ability of more than 90%. The sucrose gradient profiles of ribosomes and primer extension analysis showed that the loss of protein-synthesis ability of mutant ribosomes harboring a base substitution from G to U at position 791 stems partially from its inability to form 70S ribosomes. These findings show the involvement of the nucleotide at position 791 in the association of ribosomal subunits and protein synthesis steps after 70S formation, as well as the possibility of using 16S rRNA mutated at position 791 for the selection of second-site revertants in order to identify ligands that interact with G791 in protein synthesis.