• 제목/요약/키워드: Functional Solution Analysis

검색결과 307건 처리시간 0.021초

Dynamic Headspace Analysis of Volatile Constituents of Swiss Cheese Whey Protein Concentrate

  • Ha, E.Y.W.;Lee, S.J.;Jung, E.J.;Lee. Y.B.;Morr, C.V.
    • Preventive Nutrition and Food Science
    • /
    • 제7권3호
    • /
    • pp.299-304
    • /
    • 2002
  • Volatile flavor compounds in the headspace of swiss cheese whey protein concentrate (WPC) were analyzed by dynamic headspace analyzer, gas chromatography, and mass spectrometer. Sixty one compounds were detected from the headspace of dry WPC and 23 compounds from the headspace of an aqueous solution of WPC. The major components were propanol, hexanal, 2-butanone, 2-pentanone, 2,3-butanedion, 2-propanol, acetic acid, dimethyl disulfide and benzothiazole. An external dynamic headspace sampler, devised for this study, effectively collected volatiles from the headspace of dry WPC and aqueous WPC solutions.

성능변수를 고려한 화물용 튜브운송시스템 개념 아키텍처 설계에 관한 연구 (A study on the Conceptual Architecture design of the Tube Transportation System considering performance parameters)

  • 최요철
    • 시스템엔지니어링학술지
    • /
    • 제6권2호
    • /
    • pp.29-35
    • /
    • 2010
  • In general, an Architecture of a system is embodied as applied results of a requirement analysis of a system in early development phase. These efforts play a important role in analyzing and understanding a system considering operational, functional, and physical view and deriving a correct solution before developing the system. In this paper, the architecture of the Tube Transportation System(TTS) known as the new transportation system in Railway Domain is depicted by performance parameter has already developed. The existing performance parameters are shown by a variety of types with many meanings rather than types of general requirements refined. As these early performance parameters have analyzed and complemented to a level of requirement by requirement managers and other domain specialists, the architecture of the Tube Transportation System was developed systematically and then system requirements will be drawn up definitely. The presented architecture will provide a framework of developing a TTS and also offer an information in performance analysis of TTS.

  • PDF

폐쇄형 이중세포로 된 박벽 복합재료 블레이드의 단순화 해석 모델 (A Simple Beam Model for Thin-Walled Composite Blades with Closed, Two-Cell Sections)

  • 정성남;박일주;이주영;이정진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.187-190
    • /
    • 2005
  • A simple beam model based on a mixed method is proposed for the analysis of thin-walled composite blades with a two-cell airfoil section. A semi-complementary energy functional is used to obtain the beam force-displacement relations. The theory accounts for the effects of elastic couplings, shell wall thickness, warping, and warping restraint. All the kinematic relations as well as the cross-section stiffnesses are evaluated in a closed-form through the current beam formulation. The theory has been applied to two-cell composite blades with extension-torsion couplings and fairly good correlation has been observed in comparison with a detailed analysis and other literature.

  • PDF

Formulating Analytical Solution of Network ODE Systems Based on Input Excitations

  • Bagchi, Susmit
    • Journal of Information Processing Systems
    • /
    • 제14권2호
    • /
    • pp.455-468
    • /
    • 2018
  • The concepts of graph theory are applied to model and analyze dynamics of computer networks, biochemical networks and, semantics of social networks. The analysis of dynamics of complex networks is important in order to determine the stability and performance of networked systems. The analysis of non-stationary and nonlinear complex networks requires the applications of ordinary differential equations (ODE). However, the process of resolving input excitation to the dynamic non-stationary networks is difficult without involving external functions. This paper proposes an analytical formulation for generating solutions of nonlinear network ODE systems with functional decomposition. Furthermore, the input excitations are analytically resolved in linearized dynamic networks. The stability condition of dynamic networks is determined. The proposed analytical framework is generalized in nature and does not require any domain or range constraints.

A NON-ITERATIVE RECONSTRUCTION METHOD FOR AN INVERSE PROBLEM MODELED BY A STOKES-BRINKMANN EQUATIONS

  • Hassine, Maatoug;Hrizi, Mourad;Malek, Rakia
    • 대한수학회지
    • /
    • 제57권5호
    • /
    • pp.1079-1101
    • /
    • 2020
  • This work is concerned with a geometric inverse problem in fluid mechanics. The aim is to reconstruct an unknown obstacle immersed in a Newtonian and incompressible fluid flow from internal data. We assume that the fluid motion is governed by the Stokes-Brinkmann equations in the two dimensional case. We propose a simple and efficient reconstruction method based on the topological sensitivity concept. The geometric inverse problem is reformulated as a topology optimization one minimizing a least-square functional. The existence and stability of the optimization problem solution are discussed. A topological sensitivity analysis is derived with the help of a straightforward approach based on a penalization technique without using the classical truncation method. The theoretical results are exploited for building a non-iterative reconstruction algorithm. The unknown obstacle is reconstructed using a levelset curve of the topological gradient. The accuracy and the robustness of the proposed method are justified by some numerical examples.

열복사를 고려한 열기계학적 해석을 위한 유한요소 부영역 결합법의 적용 (Subdomain-Based Finite Element Method for Thermomechanical Analysis with Thermal Radiation)

  • 신의섭;진지만
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.705-712
    • /
    • 2006
  • A finite element method based on the penalized subdomain-interface framework is proposed for fully-coupled, nonlinear thermomechanical analyses with thermal contact anuor radiation boundaries. In the variational formulation, a well-known penalty functional scheme is adopted for connecting subdomains and interfaces that satisfy various continuity requirements. As a logical consequence, the whole domain can be arbitrarily divided into independently-modeled subdomains without considering the conformity of meshes along their interfaces. Since the nonlinearities due to the contact and radiation boundaries can be localized within a few subdomains, the computational efficiency of the present method is greatly increased with appropriate solution algorithms. By solving some numerical problems, these advantageous features are confirmed carefully.

𝜓-COUPLED FIXED POINT THEOREM VIA SIMULATION FUNCTIONS IN COMPLETE PARTIALLY ORDERED METRIC SPACE AND ITS APPLICATIONS

  • Das, Anupam;Hazarika, Bipan;Nashine, Hemant Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권2호
    • /
    • pp.273-288
    • /
    • 2021
  • We proposed to give some new 𝜓-coupled fixed point theorems using simulation function coupled with other control functions in a complete partially ordered metric space which includes many related results. Further we prove the existence of solution of a fractional integral equation by using this fixed point theorem and explain it with the help of an example.

QUALITATIVE ANALYSIS OF A PROPORTIONAL CAPUTO FRACTIONAL PANTOGRAPH DIFFERENTIAL EQUATION WITH MIXED NONLOCAL CONDITIONS

  • Khaminsou, Bounmy;Thaiprayoon, Chatthai;Sudsutad, Weerawat;Jose, Sayooj Aby
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.197-223
    • /
    • 2021
  • In this paper, we investigate existence, uniqueness and four different types of Ulam's stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class of nonlinear fractional Pantograph differential equation in term of a proportional Caputo fractional derivative with mixed nonlocal conditions. We construct sufficient conditions for the existence and uniqueness of solutions by utilizing well-known classical fixed point theorems such as Banach contraction principle, Leray-Schauder nonlinear alternative and $Krasnosel^{\prime}ski{\breve{i}}{^{\prime}}s$ fixed point theorem. Finally, two examples are also given to point out the applicability of our main results.

ON THE STABILITY OF DIFFERENTIAL SYSTEMS INVOLVING 𝜓-HILFER FRACTIONAL DERIVATIVE

  • Limpanukorn, Norravich;Ngiamsunthorn, Parinya Sa;Songsanga, Danuruj;Suechoei, Apassara
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권3호
    • /
    • pp.513-532
    • /
    • 2022
  • This paper deals with the stability of solutions to 𝜓-Hilfer fractional differential systems. We derive the fundamental solution for the system by using the generalized Laplace transform and the Mittag-Leffler function with two parameters. In addition, we obtained some necessary conditions on the stability of the solutions to linear fractional differential systems for homogeneous, non-homogeneous and non-autonomous cases. Numerical examples are also given to illustrate the behavior of solutions.

ITERATIVE ALGORITHM FOR RANDOM GENERALIZED NONLINEAR MIXED VARIATIONAL INCLUSIONS WITH RANDOM FUZZY MAPPINGS

  • Faizan Ahmad, Khan;Eid Musallam, Aljohani;Javid, Ali
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권4호
    • /
    • pp.881-894
    • /
    • 2022
  • In this paper, we consider a class of random generalized nonlinear mixed variational inclusions with random fuzzy mappings and random relaxed cocoercive mappings in real Hilbert spaces. We suggest and analyze an iterative algorithm for finding the approximate solution of this class of inclusions. Further, we discuss the convergence analysis of the iterative algorithm under some appropriate conditions. Our results can be viewed as a refinement and improvement of some known results in the literature.