• Title/Summary/Keyword: Functional Division

Search Result 2,496, Processing Time 0.028 seconds

How to Improve Eating Behaviour during Early Childhood

  • Green, Robin John;Samy, Gamal;Miqdady, Mohamad Saleh;Salah, Mohamed;Sleiman, Rola;Abdelrahman, Hatim Mohamed Ahmed;Al Haddad, Fatima;Reda, Mona M.;Lewis, Humphrey;Ekanem, Emmanuel E.;Vandenplas, Yvan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Eating behaviour disorder during early childhood is a common pediatric problem. Many terminologies have been used interchangeably to describe this condition, hindering implementation of therapy and confusing a common problem. The definition suggests an eating behaviour which has consequences for family harmony and growth. The recent Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition does not cover the entire spectrum seen by pediatricians. Publications are substantive but level of evidence is most of the time low. This purpose of this review is to clarify terminology of eating behaviour problems during early childhood; including benign picky eating, limited diets, sensory food aversion, selective eating, food avoidance emotional disorder, pervasive refusal syndrome, tactile defensiveness, functional dysphagia, neophobia and toddler anorexia. This tool is proposed only to ease the clinical management for child care providers. Diagnostic criteria are set and management tools are suggested. The role of dietary counselling and, where necessary, behavioural therapy is clarified. It is hoped that the condition will make its way into mainstream pediatrics to allow these children, and their families, to receive the help they deserve.

Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.294-301
    • /
    • 2013
  • In this study, we examined the hepatic anti-steatosis activity of carnosic acid (CA), a phenolic compound of rosemary (Rosmarinus officinalis) leaves, as well as its possible mechanism of action, in a high-fat diet (HFD)-fed mice model. Mice were fed a HFD, or a HFD supplemented with 0.01% (w/w) CA or 0.02% (w/w) CA, for a period of 12 weeks, after which changes in body weight, blood lipid profiles, and fatty acid mechanism markers were evaluated. The 0.02% (w/w) CA diet resulted in a marked decline in steatosis grade, as well as in homeostasis model assessment of insulin resistance (HOMA-IR) index values, intraperitoneal glucose tolerance test (IGTT) results, body weight gain, liver weight, and blood lipid levels (P < 0.05). The expression level of hepatic lipogenic genes, such as sterol regulating element binding protein-1c (SREBP-1c), liver-fatty acid binding protein (L-FABP), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS), was significantly lower in mice fed 0.01% (w/w) CA and 0.02% (w/w) CA diets than that in the HFD group; on the other hand, the expression level of ${\beta}$-oxidation-related genes, such as peroxisome proliferator-activated receptor ${\alpha}$ (PPAR-${\alpha}$), carnitine palmitoyltransferase 1 (CPT-1), and acyl-CoA oxidase (ACO), was higher in mice fed a 0.02% (w/w) CA diet, than that in the HFD group (P < 0.05). In addition, the hepatic content of palmitic acid (C16:0), palmitoleic acid (C16:1), and oleic acid (C18:1) was significantly lower in mice fed the 0.02% (w/w) CA diet than that in the HFD group (P < 0.05). These results suggest that orally administered CA suppressed HFD-induced hepatic steatosis and fatty liver-related metabolic disorders through decrease of de novo lipogenesis and fatty acid elongation and increase of fatty acid ${\beta}$-oxidation in mice.

Effect of Water and Ethanol Extracts Codonopsis lanceolata on Spatial Learning and Memory in Mice (더덕 물 추출물과 에탄올 추출물의 인지능 개선 활성 비교)

  • Weon, Jin Bae;Lee, Jiwoo;Eom, Min Rye;Jung, Youn Sik;Ko, Hyun-Jeong;Lee, Hyeon Yong;Park, Dong-Sik;Chung, Hee-Chul;Chung, Jae Youn;Ma, Choong Je
    • YAKHAK HOEJI
    • /
    • v.58 no.5
    • /
    • pp.287-293
    • /
    • 2014
  • Alzheimer's disease (AD), most common form of dementia is characterized that memory deficit and loss of cognitive function. This study was evaluated cognitive enhancing effect of water and ethanol extracts of Codonopsis lanceolata and compared using Morris water maze and passive avoidance test. The water and 70% ethanol extracts (100, 300 and 500 mg/kg) were administered to mice. The neuroprotective effect on glutamate-induced cell death in HT22 cells was additionally investigated using MTT assay. Results showed 70% ethanol extract of Codonopsis lanceolata enhanced cognitive function than water extract, as shown by decrease in escape latency time in Morris water maze test. In passive avoidance test, 70% ethanol extract also increased the latency time compared to the water extract. Furthermore, 70% ethanol extract significantly protected neuronal cell against glutamate cytotoxicity and showed higher than neuroprotective effect of water extract. These results indicate that 70% ethanol extract more improve spatial cognitive ability and protected neuronal cells than water extract.

Evaluating Interactive Fatigue Management Workshops for Occupational Health Professionals in the United Kingdom

  • Ali, Sheila;Chalder, Trudie;Madan, Ira
    • Safety and Health at Work
    • /
    • v.5 no.4
    • /
    • pp.191-197
    • /
    • 2014
  • Background: Disabling fatigue is common in the working age population. It is essential that occupational health (OH) professionals are up-to-date with the management of fatigue in order to reduce the impact of fatigue on workplace productivity. Our aim was to evaluate the impact of one-day workshops on OH professionals' knowledge of fatigue and chronic fatigue syndrome (CFS), and their confidence in diagnosing and managing these in a working population. Methods: Five interactive problem-based workshops were held in the United Kingdom. These workshops were developed and delivered by experts in the field. Questionnaires were self-administered immediately prior to, immediately after, and 4 months following each workshop. Questionnaires included measures of satisfaction, knowledge of fatigue and CFS, and confidence in diagnosing and managing fatigue. Open-ended questions were used to elicit feedback about the workshops. Results: General knowledge of fatigue increased significantly after training (with a 25% increase in the median score). Participants showed significantly higher levels of confidence in diagnosing and managing CFS (with a 62.5% increase in the median score), and high scores were maintained 4 months after the workshops. OH physicians scored higher on knowledge and confidence than nurses. Similarly, thematic analysis revealed that participants had increased knowledge and confidence after attending the workshops. Conclusion: Fatigue can lead to severe functional impairment with adverse workplace outcomes. One-day workshops can be effective in training OH professionals in how to diagnose and manage fatigue and CFS. Training may increase general knowledge of fatigue and confidence in fatigue management in an OH setting.

In Vivo Measurement of Site-Specific Peritoneal Solute Transport Using a Fiber-Optic-based Fluorescence Photobleaching Technique

  • Lee, Donghee;Kim, Jeong Chul;Shin, Eunkyoung;Ju, Kyung Don;Oh, Kook-Hwan;Kim, Hee Chan;Kang, Eungtaek;Kim, Jung Kyung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Fluorescence recovery after photobleaching (FRAP) is a well-established method commonly used to measure the diffusion of fluorescent solutes and biomolecules in living cells or tissues. Here a fiber-optic-based FRAP (f-FRAP) system was developed, and validated using macromolecules in water and agarose gels of different concentrations. We applied f-FRAP to measure the site-specific diffusion of fluorescein (NaFluo) in peritoneal membranes (PMs) on the liver, cecum, and kidney of a living rat during peritoneal dialysis. Diffusion of fluorescein in PM varied in a time-dependent manner according to the type of organ ($D_{PM\;on\;Liver}/D_{NaFluo}=0.199{\pm}0.085$, $D_{PM\;on\;Cecum}/D_{NaFluo}=0.292{\pm}0.151$, $D_{PM\;on\;Kidney}/D_{NaFluo}=0.218{\pm}0.110$). The proposed method allows direct quantitative measurement of the three-dimensional diffusion in local PM in vivo, which was previously inaccessible by peritoneal function test methods such as peritoneal equilibration test (PET) and standardized PM assessment (SPA). f-FRAP is promising for local and dynamic assessments of peritoneal pathophysiology and the mass transport properties of PMs, presumed to be affected by variation of tissue structures over different organs and functional changes of the PM with years of peritoneal dialysis.

The Effects of Product Image Locations and Product Type on Responses to Search Engine Advertising (제품검색광고 내 제품 이미지 위치와 판매 단위 유형이 광고효과에 미치는 영향에 대한 연구)

  • Lee, Sungmi
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.397-404
    • /
    • 2021
  • Product image location in search engine advertising plays an important role in consumer perception when the product is relatively low involved and has functional value. The purpose of this research is to investigate the interaction effects of product image location and product type on advertising effectiveness. Building on the literature of location effects, we show that for products for which heaviness is considered a positive attribute, product image placed on the right are preferred. To test hypotheses, a 2(product image location: left vs. right) × 2(product type: single vs. bundle) experiment is conducted and a total of 144 paricipants took part in the experiment. The results revealed that respondents show higher brand attitude and purchse intention toward a bundle product's advertising with product image place on the right. The results provide implications and suggestions for improving search engine advertising and marketing strategies.

Effects of Ecklonia cava Extract on Neuronal Damage and Apoptosis in PC-12 Cells against Oxidative Stress

  • Shin, Yong Sub;Kim, Kwan Joong;Park, Hyein;Lee, Mi-Gi;Cho, Sueungmok;Choi, Soo-Im;Heo, Ho Jin;Kim, Dae-Ok;Kim, Gun-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.584-591
    • /
    • 2021
  • Marine algae (seaweed) encompass numerous groups of multicellular organisms with various shapes, sizes, and colors, and serve as important sources of natural bioactive substances. The brown alga Ecklonia cava Kjellman, an edible seaweed, contains many bioactives such as phlorotannins and fucoidans. Here, we evaluated the antioxidative, neuroprotective, and anti-apoptotic effects of E. cava extract (ECE), E. cava phlorotannin-rich extract (ECPE), and the phlorotannin dieckol on neuronal PC-12 cells. The antioxidant capacities of ECPE and ECE were 1,711.5 and 1,050.4 mg vitamin C equivalents/g in the ABTS assay and 704.0 and 474.6 mg vitamin C equivalents/g in the DPPH assay, respectively. The dieckol content of ECPE (58.99 mg/g) was approximately 60% higher than that of ECE (36.97 mg/g). Treatment of PC-12 cells with ECPE and ECE increased cell viability in a dose-dependent manner. Intracellular oxidative stress in PC-12 cells due to ECPE and ECE decreased dose-independently by up to 63% and 47%, respectively, compared with the stress control (323%). ECPE reduced the production of the pro-apoptotic proteins Bax and caspase-3 more effectively than ECE. Early and late apoptosis in PC-12 cells were more effectively decreased by ECPE than ECE treatments. From the results obtained in this study, we concluded that ECPE, which is rich in phlorotannins, including the marker compound dieckol, may be applied to the development of functional materials for improving cognition and memory.

Hyperglycemia aggravates decrease in alpha-synuclein expression in a middle cerebral artery occlusion model

  • Kang, Ju-Bin;Kim, Dong-Kyun;Park, Dong-Ju;Shah, Murad-Ali;Kim, Myeong-Ok;Jung, Eun-Jung;Lee, Han-Shin;Koh, Phil-Ok
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.195-202
    • /
    • 2018
  • Hyperglycemia is one of the major risk factors for stroke. Hyperglycemia can lead to a more extensive infarct volume, aggravate neuronal damage after cerebral ischemia. ${\alpha}$-Synuclein is especially abundant in neuronal tissue, where it underlies the etiopathology of several neurodegenerative diseases. This study investigated whether hyperglycemic conditions regulate the expression of ${\alpha}$-synuclein in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury. Male Sprague-Dawley rats were treated with streptozotocin (40 mg/kg) via intraperitoneal injection to induce hyperglycemic conditions. MCAO were performed four weeks after streptozotocin injection to induce focal cerebral ischemia, and cerebral cortex tissues were obtained 24 hours after MCAO. We confirmed that MCAO induced neurological functional deficits and cerebral infarction, and these changes were more extensive in diabetic animals compared to non-diabetic animals. Moreover, we identified a decrease in ${\alpha}$-synuclein after MCAO injury. Diabetic animals showed a more serious decrease in ${\alpha}$-synuclein than non-diabetic animals. Western blot and reverse-transcription PCR analyses confirmed more extensive decreases in ${\alpha}$-synuclein expression in MCAO-injured animals with diabetic condition than these of non-diabetic animals. It is accepted that ${\alpha}$-synuclein modulates neuronal cell death and exerts a neuroprotective effect. Thus, the results of this study suggest that hyperglycemic conditions cause more serious brain damage in ischemic brain injuries by decreasing ${\alpha}$-synuclein expression.

Cytokine modulation in Raw 264.7 macrophages treated with ginseng fermented by Penibacillus MBT213

  • Son, Ji Yoon;Renchinkhand, Gereltuya;Bae, Hyoung Churl;Paik, Seung-Hee;Lee, Jo Yoon;Nam, Myoung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.769-777
    • /
    • 2018
  • The fermentation of Panax ginseng yields many compounds including ginsenosides that have various biological functions. The objective of this study was to investigate the modulation of nitric oxide (NO), Interleukin (IL)-6 and tumor necrosis factor $(TNF)-{\alpha}$ in Raw 264.7 cells treated with ginseng fermented by Penibacillus MBT213. Nitric oxide production in the Raw 264.7 cells treated for 24 hours with fermented ginseng at 3, 7, and 14 days after the treatment decreased to 74, 43, and 36%, respectively, compared with the positive control. The production of IL-6 was inhibited in all the cells treated with fermented ginseng at 3, 7, and 14 days after the treatment except for the positive control. The $TNF-{\alpha}$ production in the Raw 264.7 cells treated with fermented ginseng for 6 hours at 3, 7, and 14 days after the treatment was about 40,000, 85,000 and 65,000 pg/mL, respectively. Moreover, the $TNF-{\alpha}$ production in the Raw 264.7 cells treated with fermented ginseng for 24 hours at 7 and 14 days after the treatment was about 160,000 and 180,000 pg/mL, respectively. However, $TNF-{\alpha}$ production was inhibited in the Raw 264.7 cells at 6 and 12 hours after the treatment with fermented ginseng. herefore, it was confirmed that the immunological activity of the Raw 264.7 macrophages was affected by the treatment with fermented ginseng. It was concluded that ginseng fermented by Paenibacillus MBT213 possesses a potential anti-inflammatory activity and could be used as an ingredient in functional foods and pharmaceutical products.

Growth and Ginsenoside Content of One Year Old Ginseng Seedlings in Hydroponic Culture over a Range of Days after Transplanting (수경재배 시 1년생 묘삼 이식 후 경과일수에 따른 인삼의 생육 및 Ginsenoside 함량)

  • Jeong, Dae Hui;Lee, Dae Young;Jang, In Bae;Yu, Jin;Park, Kee Choon;Lee, Eung Ho;Kim, Young Jun;Park, Hong Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.464-470
    • /
    • 2018
  • Background: Ginseng produced by hydroponics can be cultivated without using agricultural chemicals; thus, it can be used as a raw materials for functional foods, medicines, and cosmetics. This study aimed to determine the optimal harvesting time to obtain the highest levels of ginsenoside and ginseng, as this was not previously unknown. Methods and Results: One-year-old organic ginseng seedlings were transplanted and cultivated using hydroponics for 150 days in a venlo-type greenhouse, using ginseng nursery bed soil and a nutrient solution ($NO_3{^-}-N$; 6.165, P; 3.525, K; 5.625, Ca; 4.365, Mg; 5.085, S; $5.31mEq/{\ell}$). Ginsenoside content and fresh and dry weights were higher at 120 days after transplanting than at 30, 60, 90, and 150 days. Total ginsenoside content was 11.86 times higher in the leaf and stem than in the root at 120 days after transplanting. Ginsenosides F1, F2, F3, and F5 were detected in ginseng leaves and stems. These chemical compounds are known to be effective in altering skin properties, including whitening, anti-inflammation, and anti-aging. Conclusions: Optimal harvesting time for ginseng cultivated using hydroponics was 120 days after transplanting when the biomass and ginsenoside content were highest.