• Title/Summary/Keyword: Function space integral

Search Result 177, Processing Time 0.021 seconds

A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term (RBF 신경망과 강인 항을 적용한 I-PID 기반 2 자유도 뱀 로봇 머리 제어에 관한 연구)

  • Sung-Jae Kim;Jin-Ho Suh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.139-148
    • /
    • 2024
  • In this paper, we propose a two-degree-of-freedom snake robot head system and an I-PID (Intelligent Proportional-Integral-Derivative)-based controller utilizing RBF (Radial Basis Function) neural network and adaptive robust terms as a control strategy to reduce rotation occurring in the snake robot head. This study proposes a two-degree-of-freedom snake robot head system to avoid complex snake robot dynamics. This system has a control system independent of the snake robot. Subsequently, it utilizes an I-PID controller to implement a control system that can effectively manage rotation at the snake robot head, the robot's nonlinearity, and disturbances. To compensate for the time delay estimation errors occurring in the I-PID control system, an RBF neural network is integrated. Additionally, an adaptive robust term is designed and integrated into the control system to enhance robustness and generate control inputs responsive to signal changes. The proposed controller satisfies stability according to Lyapunov's theory. The proposed control strategy was tested using a 9-degreeof-freedom snake robot. It demonstrates the capability to reduce rotation in Lateral undulation, Rectilinear, and Sidewinding locomotion.

A Study on Estimation of Energy required for Fin Unfolding (공력면 전개에 필요한 전개 에너지의 추산에 관한 연구)

  • Jung, Suk-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.283-292
    • /
    • 2009
  • Considering an integral equation governing the motion of unfolding fin, an algebraic equation was acquired to get estimated minimum deployment energy required for the successful fin unfolding under the given wind condition. To complete the integration of moment, some approximations had to be introduced particularly to frictional moment and aerodynamic damping for which deployment angular speed of the unfolding fin was modelled as a function of deployment angle only with assumed profile using expected maximum angular speed. Technique for the estimation of the minimum required deployment energy was finalized by introducing the ideal deployment angular speed representing work done by the fin unfolding device alone during fin unfolding and was confirmed by comparing results from simulation with various aerodynamic conditions and profiles of the hinge torque.

Analysis of Magnetic Fields Induced by Line Currents using Coupling of FEM and Analytical Solution (선전류에 의해 발생되는 자장의 해석을 위한 유한요소법과 해석해의 결합 기법)

  • Kim, Young-Sun;Cho, Dae-Hoon;Lee, Ki-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.141-145
    • /
    • 2006
  • The line current problem(2-dimensional space : point source) is not easy to analyze the magnetic field using the standard finite element method(FEM), such as overhead trolley line or transmission line. To supplement such a defect this paper is proposed the coupling scheme of analytical solution and FEM. In analysis of the magnetic field using the standard FEM. If the current region is a relatively small compared to the whole region. Therefore the current region must be finely divided using a large number of elements. And the large number of elements increase the number of unknown variables and the use of computer memories. In this paper, an analytical solution is suggested to supplement this weak points. When source is line current and the part of interest is far from line current, the analytical solution can be coupling with FEM at the boundary. Analytical solution can be described by the multiplication of two functions. One is power function of radius, the other is a trigonometric function of angle in the cylindrical coordinate system. There are integral constants of two types which can be established by fourier series expansion. Also fourier series is represented as the factor to apply the continuity of the magnetic vector potential and magnetic field intensity with tangential component at the boundary. To verify the proposed algorithm, we chose simplified model existing magnetic material in FE region. The results are compared with standard FE solution. And it is good agreed by increasing harmonic order.

Model Predictive Control for Induction Motor Drives Fed by a Matrix Converter (매트릭스 컨버터로 구동되는 유도전동기의 직접토크제어를 위한 모델예측제어 기반의 SVM 기법)

  • Choi, Woo Jin;Lee, Eunsil;Song, Joong-Ho;Lee, Young-Il;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.900-907
    • /
    • 2014
  • This paper proposes a MPC (Model Predictive Control) method for the torque and flux controls of induction motor. The proposed MPC method selects the optimized voltage vector for the matrix converter control using the predictive modeling equation of the induction motor and cost function. Hence, the reference voltage vector that minimizes the cost function of the torque and flux error within the control period is selected and applied to the actual system. As a result, it is possible to perform the torque and flux control of induction motor using only the MPC controller without a PI (Proportional-Integral) or hysteresis controller. Even though the proposed control algorithm is more complicated and has lots of computations compared with the conventional MPC, it can perform torque ripple reduction by synthesizing voltage vectors of various magnitude. This feature provides the reduction of amount of calculations and the improvement of the control performance through the adjustment of the number of the unit vectors n. The proposed control method is validated through the PSIM simulation.

An efficient 2.5D inversion of loop-loop electromagnetic data (루프-루프 전자탐사자료의 효과적인 2.5차원 역산)

  • Song, Yoon-Ho;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.68-77
    • /
    • 2008
  • We have developed an inversion algorithm for loop-loop electromagnetic (EM) data, based on the localised non-linear or extended Born approximation to the solution of the 2.5D integral equation describing an EM scattering problem. Source and receiver configuration may be horizontal co-planar (HCP) or vertical co-planar (VCP). Both multi-frequency and multi-separation data can be incorporated. Our inversion code runs on a PC platform without heavy computational load. For the sake of stable and high-resolution performance of the inversion, we implemented an algorithm determining an optimum spatially varying Lagrangian multiplier as a function of sensitivity distribution, through parameter resolution matrix and Backus-Gilbert spread function analysis. Considering that the different source-receiver orientation characteristics cause inconsistent sensitivities to the resistivity structure in simultaneous inversion of HCP and VCP data, which affects the stability and resolution of the inversion result, we adapted a weighting scheme based on the variances of misfits between the measured and calculated datasets. The accuracy of the modelling code that we have developed has been proven over the frequency, conductivity, and geometric ranges typically used in a loop-loop EM system through comparison with 2.5D finite-element modelling results. We first applied the inversion to synthetic data, from a model with resistive as well as conductive inhomogeneities embedded in a homogeneous half-space, to validate its performance. Applying the inversion to field data and comparing the result with that of dc resistivity data, we conclude that the newly developed algorithm provides a reasonable image of the subsurface.

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

Appling Nursing Theory to Clinical Practice of Home Health Care (가정간호실무에 적용가능한 이론적틀)

  • Woo, Seon-Hye
    • Journal of Korean Academic Society of Home Health Care Nursing
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 2004
  • The home health care industry has grown rapidly and can be expected to continue to grow in the foreseeable future. Home health care refers to the practice of nursing applied to clients with a health condition in the clients place of residence. clients and their designated care givers are the focus at home health nursing practice. The goal of care is to initiate. manage and evaluate the resources needed to promote the clients optimal level of well-being and function. Nursing activities necessary to achieve this goal may warrant preventive maintenance and restorative emphases to prevent potential problems from developing. Many project program were suggested home health care model for Korea's health care system and policy direction for expansion and establishment of home health care .But the aim of this paper is to provide on overview for theoretical frame work in home health care. Theories and conceptual frameworks or models are important nursing because they define and guide the boundaries of professional practice and identify key nurse-patient-caregiver relationships that emerge with caring. Following is the research with an investigation of the literature review in the University of Arizona international medline database, In conclusion, are as followers: First, many nursing theorists have had a tremendous impact on nursing practice. the following highlights those nursing theorists that are particularly helpful in understanding home health care. 1. Florence Nightingale : Our earliest theoretical legacy. Nightingale's believes are reflected in basic infection control practice such as hand washing and infectious waste disposal and are key nursing interventions in home care. 2. Martha Roger's :Science of unitary human beings theory. Rorger's believed that the focus of shared. non invasive healing modelities is the human environmental field rather than direct physical care. These modelities continue to evolve as our awareness (reflecting greater diversity, faster rhythms, motions, and ways of knowing) transcends time and space, allowing individuals to get in touch with their integral nature of unbroken wholeness. On people as ever changing energy fields have special relevance in home care especially with hospice and palliative care applications. 3. Madeline Leininger's; Transcultural nursing theory. Home care nurses move through a variety of communities and often care for patients from different cultural back grounds. Therefore Leininger's work has a good that with home care because home care nursing practice is very culturally focused. 4. Dorothea Orem's : Self care deficit theory. Orem's theory views care as something to be performed by both nurses and patients. The role of the nurse is to provide education and support that help patients acquire the necessary activities to perform self-care. Orem's theory is foundational to have care because it begins to truly acknowledge the role of the patient in managing his or her own health. which is referred to as self-care. 5. Margaret Neuman's; Health as expending consciousness theory. Neuman believes that health compasses disease and reflects an underlying pattern of person-environment interaction. A key application of 'Neuman's work to home care is for nurses to understand that health and illness do not necessarily exist at opposite ends of a continuum. 6. Jean Watson's: Theory of human caring. Watson's theory of human caring in nursing proposes human caring as the moral ideal of nursing. Nurses participate human caring to protect, enhance and preserve humanity by assisting individuals to fing meaning in illness. pain and existence and to help others gain self knowledge. self control. and self healing such thinking lends richness to theory development. as well as clinical practice in home care. Second, Robin Rice : Dynamic self determination for self care. (A theoretical framework for home care) Dynamical self determination for self care can be useful to home care nurses in a variety of ways. As research tool it can be reflected in the interview process when the home visit. The home care nurse's role is that of facilitator of patient self-determination for self care through numerous strategies. including patient education and case management.

  • PDF