Mackerel is one of the most widely consumed aquatic products in Korea. Concerns about the depletion of stocks have also arisen as the catch has decreased. The primary purpose of this study is to estimate the mackerel stock and derive the optimal level of catch in Korea. We apply a generalized maximum entropy econometric method to estimate the mackerel growth function, which does not require the steady state assumption. We incorporate a bootstrapping approach to derive the significance levels of parameter estimates. We found that the average ratio of catch to the estimated total stock was less than 30% before the 1990s but exceeded 40% in the 1990s. After 2000, it dropped back to about 36%. This finding indicates that mackerel may have been over-fished in the 1990s, but the government regulations introduced in the 2000s alleviated over-fishing problems. Nevertheless, our dynamic optimization analysis suggests that the total allowable catch may need to be carefully controlled to achieve socially optimal management of resources.
The Journal of Korean Institute of Next Generation Computing
/
v.15
no.5
/
pp.64-74
/
2019
Although a non-rigid registration has high demands in clinical practice, it has a high computational complexity and it is very difficult for ensuring the accuracy and robustness of registration. This study proposes a method of applying a non-rigid registration to 3D magnetic resonance images of brain in an unsupervised learning environment by using a deep-learning network. A feature vector between two images is produced through the network by receiving both images from two different patients as inputs and it transforms the target image to match the source image by creating a displacement vector field. The network is designed based on a U-Net shape so that feature vectors that consider all global and local differences between two images can be constructed when performing the registration. As a regularization term is added to a loss function, a transformation result similar to that of a real brain movement can be obtained after the application of trilinear interpolation. This method enables a non-rigid registration with a single-pass deformation by only receiving two arbitrary images as inputs through an unsupervised learning. Therefore, it can perform faster than other non-learning-based registration methods that require iterative optimization processes. Our experiment was performed with 3D magnetic resonance images of 50 human brains, and the measurement result of the dice similarity coefficient confirmed an approximately 16% similarity improvement by using our method after the registration. It also showed a similar performance compared with the non-learning-based method, with about 10,000 times speed increase. The proposed method can be used for non-rigid registration of various kinds of medical image data.
Recently, museums are attracting the attention of visitors and society. However, research on museum interpretation conducted at domestic and foreign is relatively limited. The plan design of the museum commentary system was mainly based on the perspective of the experts, and most of them do not reflect the desire of the visitors. This study focused on visitors' experience of using museum Interpretation system. Through analyzing the effect of the Interpretation system of the museum that the visitor feels, we examined whether the Interpretation system of the museum meets the cultural needs of the visitors and identified the problems and deficiencies in the system. After that, the problems were rearranged and suggested the main elements of the commentary system of the museum finally, so as to help improve the museum commentary system and the educational function.In the first part of the study, the four major explanatory methods existing in the museum were confirmed. After that, we conducted in - depth interviews on four types of commentary methods and collected existing problems and deficiencies. The results of the type analysis were grouped into 14 types and the questionnaire was used to conduct a general survey on 14 problems. In this study, the user 's discomfort and problems were identified in the museum Interpretation system, and based on this, five key elements necessary for the museum Interpretation system were derived. Among them, inhalation is the weakest element in the museum commentary system, and future research will be conducted on how to apply each factor. I hope that you will be a reference material when you carry out research on the optimization of the Interpretation system of the museum and the improvement of the Interpretation experience.
This paper reports a slim mobile lens design using a hybrid refractive/diffractive optical element. Conventionally a wide field of view (FOV) camera-lens design adopts a retrofocus type having a negative (-) lens at the forefront, so that it improves in imaging performance over the wide FOV, but with the sacrifice of longer total track length (TTL). However, we chose a telephoto type as a baseline design layout having a positive (+) lens at the forefront, to achieving slimness, based on the specification analysis of 23 reported optical designs. Following preliminary optimization of a baseline design and aberration analysis based on Zernike-polynomial decomposition, we applied a hybrid refractive/diffractive element to effectively reduce the residual chromatic spherical aberration. The optimized optical design consists of 6 optical elements, including one hybrid element. It results in a very slim telephoto ratio of 1.7, having an f-number of 2.0, FOV of 90°, effective focal length of 2.23 mm, and TTL of 3.7 mm. Compared to a comparable conventional lens design with no hybrid elements, the hybrid design improved the value of the modulation transfer function (MTF) at a spatial frequency of 180 cycles/mm from 63% to 71-73% at zero field (0 F), and about 2-3% at 0.5, 0.7, and 0.9 fields. It was also found that a design with a hybrid lens with only two diffraction zones at the stop achieved the same performance improvement.
Kang, Hye Jung;Lee, Jong Woo;Park, Tae Woo;Park, Hye Yoon;Park, Junseong
Journal of the Society of Cosmetic Scientists of Korea
/
v.46
no.4
/
pp.349-360
/
2020
Bio-conversion manufacturing technology has been developed to produce ginsenoside Rd which is increasingly in demand as a cosmetic material due to various possibilities related to improving skin function. In order to convert ginsenoside Rb1 which is contained in red ginseng saponin (RGS) into Rd, several commercial enzymes were tested. Viscoflow MG was found to be the most efficient. In order to optimize the conversion of RGS to ginsenoside Rd by enzymatic transition was carried out using response surface methodology (RSM) based on Box-Behnken design (BBD). The main independent variables were RGS concentration, enzyme concentration, and reaction time. Conversion of ginsenoside Rd was performed under 17 conditions selected according to BBD model and optimization conditions were analyzed. The concentration of the converted ginsenoside Rd ranged from 0.3113 g/L to 0.5277 g/L, and the highest production volume was obtained under condition of reacting 2% RGS and 1.25% enzyme for 13.5 hours. Consequently, RGS concentration, enzyme concentration which is 0.05 less than p-value and among the interactions between the independent variables, the interaction between enzyme concentration and reaction time was confirmed to be the most influential.
Journal of the Society of Cosmetic Scientists of Korea
/
v.46
no.4
/
pp.371-382
/
2020
There have been continuous attempts to quantify sensory attributes of cosmetic products by measuring relevant physical properties. The most representative method to evaluate stickiness is to measure axial force using texture analyzer. Stickiness is known to correlate with AUC which abbreviates area under curve in the obtained axial force curve as a function of time. Recently, Normandie University research group developed in vivo stickiness evaluation method considering the characteristics of skin along with established evaluation method[8]. Based on the study, we tried to optimize in vivo stickiness evaluation method especially for cosmetic creams. The experiment was carried out on 5 different facial creams products by changing the amount and the times of rolling of creams, and the shape and material of probes. Based on the results of the sensory evaluation, the most consistent conditions were established as the optimal evaluation method. As a result, applying 70 μL of cream and rubbing 10 times for 7 s inside the 3.4 cm circle were judged to be suitable. As for the probes, spherical metallic probe was more proper due to its reproducibility. We conducted the settled method on 10 subjects to check its validity. Although the absolute values of AUC differed depending on the individuals, the AUC values were all ranked the same. Finally, for the standardization of stickiness of AUC, polyvinylpyrrolidone (PVP) was set as a reference material and we measured AUC of its aqueous solution by changing concentration. Then, the degree of stickiness recognition for 5 different creams was surveyed to check the correlation between AUC and stickiness.
Kim, Jin-Guk;Sumyia, Uranchimeg;Kim, Tae-Jeong;Kwon, Hyun-Han
Journal of Korea Water Resources Association
/
v.54
no.11
/
pp.955-968
/
2021
A water resource plan is routinely based on a natural flow and can be estimated using observed streamflow data or a long-term continuous rainfall-runoff model. However, the watershed with the natural flow is very limited to the upstream area of the dam. In particular, for the ungauged watershed, a rainfall-runoff model is established for the gauged watershed, and the model is then applied to the ungauged watershed by transferring the associated parameters. In this study, the GR4J rainfall-runoff model is mainly used to regionalize the parameters that are estimated from the 14 dam watershed via an optimization process. In terms of optimizing the parameters, the Bayesian approach was applied to consider the uncertainty of parameters quantitatively, and a number of parameter samples obtained from the posterior distribution were used for the regionalization. Here, the relationship between the estimated parameters and the topographical factors was first identified, and the dependencies between them are effectively modeled by a Copula function approach to obtain the regionalized parameters. The predicted streamflow with the use of regionalized parameters showed a good agreement with that of the observed with a correlation of about 0.8. It was found that the proposed regionalized framework is able to effectively simulate streamflow for the ungauged watersheds by the use of the regionalized parameters, along with the associated uncertainty, informed by the basin characteristics.
Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Ahn, Joong-Bae;Hur, Jina;Kim, Yong Seok;Choi, Won Jun;Kang, Mingu
Korean Journal of Agricultural and Forest Meteorology
/
v.24
no.3
/
pp.155-163
/
2022
The optimization of long-range ensemble climate prediction for rice phenology model with advanced bias correction method is conducted. The daily long-range forecast(6-month) of mean/ minimum/maximum temperature and observation of January to October during 1991-2021 is collected for rice phenology prediction. In this study, the concept of "buffer period" is newly introduced to reduce the problem after bias correction by quantile mapping with constructing the transfer function by month, which evokes the discontinuity at the borders of each month. The four experiments with different lengths of buffer periods(5, 10, 15, 20 days) are implemented, and the best combinations of buffer periods are selected per month and variable. As a result, it is found that root mean square error(RMSE) of temperatures decreases in the range of 4.51 to 15.37%. Furthermore, this improvement of climatic variables quality is linked to the performance of the rice phenology model, thereby reducing RMSE in every rice phenology step at more than 75~100% of Automated Synoptic Observing System stations. Our results indicate the possibility and added values of interdisciplinary study between atmospheric and agriculture sciences.
Kim, Minseek;Ryu, Hojin;Oh, Min Ji;Im, Ji-Hoon;Lee, Jong-Won;Oh, Youn-Lee
Journal of Mushroom
/
v.20
no.3
/
pp.178-182
/
2022
Despite the long history of mushroom use, studies examining the genetic function of mushrooms and the development of new varieties via bio-molecular methods are significantly lacking compared to those examining other organisms. However, owing to recent developments, attempts have been made to use a novel gene-editing technique involving CRISPR/Cas9 technology and genetic scissors in mushroom studies. In particular, research is actively being conducted to utilize ribonucleoprotein particles (RNPs) that can be genetically edited with high efficiency without foreign gene insertion for ease of selection. However, RNPs are too large for Cas9 protein to pass through the cell membrane of the protoplasmic reticulum. Furthermore, guide RNA is unstable and can be easily decomposed, which remarkably affects gene editing efficiency. In this study, nanoparticles were used to mitigate the shortcomings of RNP-based gene editing techniques and to obtain transformants stably. We used Lentinula edodes (shiitake mushroom) Sanjo705-13 monokaryon strain, which has been successfully used in previous genome editing experiments. To identify a suitable osmotic buffer for the isolation of protoplast, 0.6 M and 1.2 M sucrose, mannitol, sorbitol, and KCl were treated, respectively. In addition, with various nanoparticle-forming materials, experiments were conducted to confirm genome editing efficiency via the formation of nanoparticles with calcium phosphate (CaP), which can be bound to Cas9 protein without any additional amino acid modification. RNPs/NP complex was successfully formed and protected nuclease activity with nucleotide sequence specificity.
Deep learning is used as a creative tool that could overcome the limitations of existing analysis models and generate various types of results such as text, image, and music. In this paper, we propose a method necessary to preprocess audio data using the Niko's MIDI Pack sound source file as a data set and to generate music using Bi-LSTM. Based on the generated root note, the hidden layers are composed of multi-layers to create a new note suitable for the musical composition, and an attention mechanism is applied to the output gate of the decoder to apply the weight of the factors that affect the data input from the encoder. Setting variables such as loss function and optimization method are applied as parameters for improving the LSTM model. The proposed model is a multi-channel Bi-LSTM with attention that applies notes pitch generated from separating treble clef and bass clef, length of notes, rests, length of rests, and chords to improve the efficiency and prediction of MIDI deep learning process. The results of the learning generate a sound that matches the development of music scale distinct from noise, and we are aiming to contribute to generating a harmonistic stable music.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.