• Title/Summary/Keyword: Function Transform

Search Result 1,130, Processing Time 0.027 seconds

A UGV Hybrid Path Generation Method by using B-spline Curve's Control Point Selection Algorithm (무인 주행 차량의 하이브리드 경로 생성을 위한 B-spline 곡선의 조정점 선정 알고리즘)

  • Lee, Hee-Mu;Kim, Min-Ho;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.138-142
    • /
    • 2014
  • This research presents an A* based algorithm which can be applied to Unmanned Ground Vehicle self-navigation in order to make the driving path smoother. Based on the grid map, A* algorithm generated the path by using straight lines. However, in this situation, the knee points, which are the connection points when vehicle changed orientation, are created. These points make Unmanned Ground Vehicle continuous navigation unsuitable. Therefore, in this paper, B-spline curve function is applied to transform the path transfer into curve type. And because the location of the control point has influenced the B-spline curve, the optimal control selection algorithm is proposed. Also, the optimal path tracking speed can be calculated through the curvature radius of the B-spline curve. Finally, based on this algorithm, a path created program is applied to the path results of the A* algorithm and this B-spline curve algorithm. After that, the final path results are compared through the simulation.

The Design of Expansible Digital Pulse Compressor Using Digital Signal Processors (DSP를 이용한 확장 가능한 디지털 펄스압축기 설계)

  • 신현익;류영진;김환우
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.93-98
    • /
    • 2003
  • With the improvement of digital signal processors, digital pulse compressor(DPC) is widely used in radar systems. The DPC can be implemented by using FIR filter algorithm in time domain or FFT algorithm in frequency domain. This paper designs an expansible DPC using multiple DSPs. With ADSP-21060 of Analog Devices Inc., the computation time as a function of the number of received range cells and FIR filter tap is compared and analyzed in time domain using C-language and assembly language. therefore, when radar system parameters are determined, the number of DSP's required to implement DPC can be easily estimated.

Earth Reflection Effect Analysis in the Environment of Line Source Induction (전력선 유도 환경에서의 지면 반사계 영향 분석)

  • Lee, Sangmu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.26-32
    • /
    • 2013
  • The earth reflection effect on the induced voltage by line source such as power line occurring induction inteference is analyzed to scrutinize how much it would reduce the induced voltage. Using hankel transformation including bessel function, directly calculation formulae for extracting a refelction coefficient is a most important technical application in this paper since the reflection coefficient on the earth cannot be deduced by a general coefficient calculation formulae according to a plain wave. The electric field is utilized to transform the electromagnetic field into an induced voltage. The composed efficiency to a source induction voltage by an earth reflection is about a range of 60~70% for the axis constellation of each object like observation point, source position and other material parameters.

A Study on Real Time Pitch Alteration of Speech Signal (음성신호의 실시간 피치변경에 관한 연구)

  • 김종국;박형빈;배명진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.82-89
    • /
    • 2004
  • This paper describes how to reduce the effect of an occupation threshold by that the transform of mixture components of HMM parameters is controlled in hierarchical tree structure to prevent from over-adaptation. To reduce correlations between data elements and to remove elements with less variance, we employ PCA (principal component analysis) and ICA (independent component analysis) that would give as good a representation as possible, and decline the effect of over-adaptation. When we set lower occupation threshold and increase the number of transformation function, ordinary WLLR adaptation algorithm represents lower recognition rate than SI models, whereas the proposed MLLR adaptation algorithm represents the improvement of over 2% for the word recognition rate as compared to performance of SI models.

Estimation of Concrete Strength Based on Artificial Intelligence Techniques (인공지능 기법에 의한 콘크리트 강도 추정)

  • 김세동;신동환;이영석;노승용;김성환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.101-111
    • /
    • 1999
  • This paper presents concrete pattern recognition method to identify the strength of concrete by evidence accumulation with multiple parameters based on artificial intelligence techniques. At first, variance(VAR), zero-crossing(ZCR), mean frequency(MEANF), and autoregressive model coefficient(ARC) and linear cepstrum coefficient(LCC) are extracted as feature parameters from ultrasonic signal of concrete. Pattern recognition is carried out through the evidence accumulation procedure using distance measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results(92% successful pattern recognition rate) are presented to support the feasibility of the suggested approach for concrete pattern recognition.

  • PDF

Effective Compression Technique of Multi-view Image expressed by Layered Depth Image (계층적 깊이 영상으로 표현된 다시점 영상의 효과적인 압축 기술)

  • Jee, Inn-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.29-37
    • /
    • 2014
  • Since multi-view video exists a number of camera color image and depth image, it has a huge of data. Thus, a new compression technique is indispensable for reducing this data. Recently, the effective compression encoding technique for multi-view video that used in layered depth image concepts is a remarkable. This method uses several view point of depth information and warping function, synthesizes multi-view color and depth image, becomes one data structure. In this paper we use actual distance for solving overlap in layered depth image that reduce required data for reconstructing in color-based transform. In experimental results, we confirmed high compression performance and good quality of reconstructed image.

Design of Black Plastics Classifier Using Data Information (데이터 정보를 이용한 흑색 플라스틱 분류기 설계)

  • Park, Sang-Beom;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.569-577
    • /
    • 2018
  • In this paper, with the aid of information which is included within data, preprocessing algorithm-based black plastic classifier is designed. The slope and area of spectrum obtained by using laser induced breakdown spectroscopy(LIBS) are analyzed for each material and its ensuing information is applied as the input data of the proposed classifier. The slope is represented by the rate of change of wavelength and intensity. Also, the area is calculated by the wavelength of the spectrum peak where the material property of chemical elements such as carbon and hydrogen appears. Using informations such as slope and area, input data of the proposed classifier is constructed. In the preprocessing part of the classifier, Principal Component Analysis(PCA) and fuzzy transform are used for dimensional reduction from high dimensional input variables to low dimensional input variables. Characteristic analysis of the materials as well as the processing speed of the classifier is improved. In the condition part, FCM clustering is applied and linear function is used as connection weight in the conclusion part. By means of Particle Swarm Optimization(PSO), parameters such as the number of clusters, fuzzification coefficient and the number of input variables are optimized. To demonstrate the superiority of classification performance, classification rate is compared by using WEKA 3.8 data mining software which contains various classifiers such as Naivebayes, SVM and Multilayer perceptron.

Thermal Behavior Variations in Coating Thickness Using Pulse Phase Thermography

  • Ranjit, Shrestha;Chung, Yoonjae;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was ussed to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

Assessment of Image Registration for Pressure-Sensitive Paint (Pressure Sensitive Paint를 이용한 압력장 측정기술의 이미지 등록에 관한 연구)

  • Chang, Young-Ki;Park, Sang-Hyun;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.271-280
    • /
    • 2004
  • Assessment of image registration for Pressure Sensitive Paint (PSP) was performed. A 16 bit camera and LED lamp were used with Uni-FIB paint (ISSI). Because of model displacement and deformation at 'wind-on' condition, a large error of the intensity ratio was induced between 'wind-on' and' wind-off images. To correct the error, many kinds of image registrations were tested. At first, control points were marked on the model surface to find the coefficients of polynomial transform functions between the 'wind-off' 'wind-on' images. The 2nd-order polynomial function was sufficient for representing the model displacement and deformation. An automatic detection scheme was introduced to find the exact coordinates of the control points. The present automatic detection algorithm showed more accurate and user-friendly than the manual detection algorithm. Since the coordinates of transformed pixel were not integer, five interpolation methods were applied to get the exact pixel intensity after transforming the 'wind-on' image. Among these methods, the cubic convolution interpolation scheme gave the best result.

RADIATIVE TRANSFER IN A SCATTERING SPHERICAL ATMOSPHERE

  • HONG S. S.;PARK Y.-S.;KWON S. M.;PARK C.;WEINBERG J. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.41-57
    • /
    • 2002
  • We have written a code called QDM_sca, which numerically solves the problem of radiative transfer in an anisotropically scattering, spherical atmosphere. First we formulate the problem as a second order differential equation of a quasi-diffusion type. We then apply a three-point finite differencing to the resulting differential equation and transform it to a tri-diagonal system of simultaneous linear equations. After boundary conditions are implemented in the tri-diagonal system, the QDM_sca radiative code fixes the field of specific intensity at every point in the atmosphere. As an application example, we used the code to calculate the brightness of atmospheric diffuse light(ADL) as a function of zenith distance, which plays a pivotal role in reducing the zodiacal light brightness from night sky observations. On the basis of this ADL calculation, frequent uses of effective extinction optical depth have been fully justified in correcting the atmospheric extinction for such extended sources as zodiacal light, integrated starlight and diffuse galactic light. The code will be available on request.