This study aimed to objectively classify the lateral torso posture types and functions of older women. We used 3D body scan data of 119 women aged 70-85 years from the 6th SizeKorea project. First, we defined three torso axes to represent the lateral torso posture types: posterior waist-back, back-cervical, and whole torso axes. Next, we asked experts to select one of four lateral torso posture types-stooped, straight, leaning back, and swayback postures-by looking at the lateral photographic data of 119 older women. To identify the axis that best represented each lateral torso posture type, a discriminant analysis was conducted using the angle of each of the three torso axes as an independent variable and an expert's visual classification as a dependent variable. Based on the analysis, the whole torso and backcervical axis angles were selected as variables for judging lateral torso posture types. Subsequently, we developed a classification function to determine which of the four lateral torso posture types of a particular participant was applicable for a new individual. The method developed in this study is significant in that it enables the objective classification of the lateral torso postures types of older women.
Journal of the Korean Association of Geographic Information Studies
/
v.11
no.4
/
pp.10-21
/
2008
A forest functions classification map is an essential element for the management planning of national forests. This study was intended to make out the map at the stand level by utilizing the Forest Functions Evaluation Program(FFEP), developed by Korea Forest Research Institute. In this program, the potential of each function was evaluated in each grid cell, and then a forest functions estimation map was generated based on the optimum grid cell values in each sub-compartment unit. Finally, the program produced a forest functions classification map with consideration of the priority of the functions. The final forest functions classification map required for the national forest management planning made out overlapping those results which the rest of the forest classified referring priority functions classification map to national forest manager and classified according to the local administrative guidance and sustainable forest resources management guidance. The results indicated that the forest function classification using the FFEP program could be an efficient tool for providing the data required for national forest management planning. Also this study made a meaningful progress in the forest function classification by considering the local forest administrative guidance and sustainable forest resources management guidance.
The classification scheme of records indicates a table that intends to express organic relations between records by organizing records and enabling internal order. Although the principles of organic classification have remained in traditional records management environment, they have been changed to "function and business" in the modern times. Therefore, Korea introduced a business reference model (BRM) based on function and business from 2008 and subsequently implemented its operation. However, it has been pointed out that the roles of the classification scheme of records have not been played because the analysis of "Danwigwaje," which belongs to the lowest level of business reference models, is poor. According to this indication, the Gangbuk District of Seoul Special City established a functional classification scheme by executing a business process analysis of "Danwigwaje." First, the record manager carried out analyses on the principles of "Danwigwaje," small function, and "Danwigwaje." Then, the functional classification scheme of "Danwigwaje" was modified by looking into the opinion inquiry process of the treatment department and performing a test operation. Through the case of the Gangbuk District in Seoul Special City, analytical procedures and methods of "Danwigwaje," as well as implications according to the establishment of a functional classification scheme of basic local governments, were arranged in a written format.
Journal of the Korean Data and Information Science Society
/
v.28
no.5
/
pp.1179-1189
/
2017
In this study, we propose an alternative method for discriminant analysis using a multivariate empirical distribution function to express multivariate data as a simple one-dimensional statistic. This method turns to be the estimation process of the optimal threshold based on classification accuracy measures and an empirical distribution function of data composed of classes. This can also be visually represented on a two-dimensional plane and discussed with some measures in ROC curves, surfaces, and manifolds. In order to explore the usefulness of this method for discriminant analysis in the study, we conducted comparisons between the proposed method and the existing methods through simulations and illustrative examples. It is found that the proposed method may have better performances for some cases.
Recently, computer vision application is increasing by using CNN which is one of the deep learning algorithms. However, CNN does not provide perfect classification performance due to gradient vanishing problem. Most of CNN algorithms use an activation function called ReLU to mitigate the gradient vanishing problem. In this study, four activation functions that can replace ReLU were applied to four different structural networks. Experimental results show that ReLU has the lowest performance in accuracy, loss rate, and speed of initial learning convergence from 20 experiments. It is concluded that the optimal activation function varied from network to network but the four activation functions were higher than ReLU.
Journal of the Korean Institute of Telematics and Electronics B
/
v.32B
no.3
/
pp.503-511
/
1995
A batch-mode algorithm is proposed to increase the speed of learning in the error backpropagation algorithm with variable learning rate and variable momentum parameters in classification problems. The objective function is normalized with respect to the number of patterns and output nodes. Also the gradient of the objective function is normalized in updating the connection weights to increase the effect of its backpropagated error. The learning rate and momentum parameters are determined from a function of the gradient norm and the number of weights. The learning rate depends on the square rott of the gradient norm while the momentum parameters depend on the gradient norm. In the two typical classification problems, simulation results demonstrate the effectiveness of the proposed algorithm.
The use of a chemical sensor array can help discriminate between chemicals when comparing one sample with another. The ability to classify pattern characteristics from relatively small pieces of information has led to growing interest in methods of sensor recognition. A variety of pattern recognition algorithms, including the adaptive radial basis function network (RBFN), may be applicable to gas and/ or odor classification. In this paper, we provide a broad review of approaches for various types of gas and/or odor identification techniques based on RBFN and drift compensation techniques caused by sensor poisoning and aging.
Recently, studies on utilizing tensor expression on image data analysis and processing have been attracting much interest. The purpose of this study is to develop an efficient system for classifying image patterns by using second order tensor expression. To achieve the goal, we propose a data generation model expressed by class factors and environment factors with second order tensor representation. Based on the data generation model, we define a function for measuring similarities between two images. The similarity function is obtained by estimating the probability density of environment factors using a matrix normal distribution. Through computational experiments on a number of benchmark data sets, we confirm that we can make improvement in classification rates by using second order tensor, and that the proposed similarity function is more appropriate for image data compared to conventional similarity measures.
The active database system introduces the active rules detecting specified state. As the condition evaluation of the active rules is performed every time an event occurs, the performance of the system has a great influence, depending on the conditions processing method. In this paper, we propose the conditions processing system with the preprocessor which determines the delta tree structure, constructs the classification tree, and generates the aggregate function table. Due to the characteristics of the active database through which the active rules can be comprehended beforehand, the preprocessor can be introduced. In this paper, the delta tree which can effectively process the join, selection operations, and the aggregate function is suggested, and it can enhance the condition evaluation performance. And we propose the classification tree which effectively processes the join operation and the aggregate function table processing the aggregate function which demands high cost. In this paper, the conditions processing system can be expected to enhance the performance of conditions processing in the active rules as the number of conditions comparison decreases because of the structure which is made in the preprocessor.
Journal of the Korean Society for information Management
/
v.40
no.4
/
pp.147-165
/
2023
New technologies representing the Fourth Industrial Revolution are already being realized in library services. There is not, however, active research on measures to increase work efficiency by introducing a new technology in the work of "classification" that is part of the traditional librarian jobs they should continue in the future. The Dewey Decimal Classification (DDC) has not issued a print version since 2018. This study analyzes cases of WebDewey, Classification Web, and UDC Online. The functions required for the development of the Korean Decimal Classification (KDC) web version were derived, and the final functions suitable for the development of the KDC web version were proposed through AHP analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.