• Title/Summary/Keyword: Function Analysis Method

Search Result 6,205, Processing Time 0.042 seconds

A mesh-free analysis method of structural elements of engineering structures based on B-spline wavelet basis function

  • Chen, Jianping;Tang, Wenyong;Huang, Pengju;Xu, Li
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The paper is devoted to study a mesh-free analysis method of structural elements of engineering structures based on B-spline Wavelet Basis Function. First, by employing the moving-least square method and the weighted residual method to solve the structural displacement field, the control equations and the stiffness equations are obtained. And then constructs the displacement field of the structure by using the m-order B-spline wavelet basis function as a weight function. In the end, the paper selects the plane beam structure and the structure with opening hole to carry out numerical analysis of deformation and stress. The Finite Element Method calculation results are compared with the results of the method proposed, and the calculation results of the relative error norm is compared with Gauss weight function as weight function. Therefore, the clarification verified the validity and accuracy of the proposed method.

A Study on the Creep Analysis of Reinforced and Prestressed Concrete Structures Using Creep Recovery Function (크리프 회복식을 이용한 철근콘크리트 및 프리스트레이트 콘크리트 부재의 크리프 해석에 고나한연구)

  • 오병환;김세훈;양인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.339-345
    • /
    • 1998
  • The creep of concrete structures caused by variable stresses is mostly calculated by step-by-step method based on the superposition of creep function. Although most practical application is carried out by this linear assumption, significant deviations between predictions and experiments have been observed when unloading takes place, that is, stress is reduced. The recovery is overestimated. The main purpose of this study is to present the application method of the creep analysis model which is expressed with both creep function and creep recovery function to concrete structures where is expressed with both creep function and creep recovery function to concrete structures where increase or decrease of stress is repeated . To apply two function method to time analysis of concrete structures, this study presents the calculation method of creep strain increment for stress variation. Then, this paper executes the time analysis for an example using suggested method, and compares theses results with the previous analysis values and experimental results.

  • PDF

Geometric Implicit Function Modeling and Analysis Using R-functions (R-function을 이용한 형상의 음함수 모델링 및 해석)

  • Shin, Heon-Ju;Sheen, Dong-Woo;Kim, Tae-Wan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.220-232
    • /
    • 2007
  • Current geometric modeling and analysis are commonly based on B-Rep modeling and a finite elements method respectively. Furthermore, it is difficult to represent an object whose material property is heterogeneous using the B-Rep method because the B-Rep is basically used for homogeneous models. In addition, meshes are required to analyze a property of a model when the finite elements method is applied. However, the process of generating meshes from B-Rep is cumbersome and sometimes difficult especially when the model is deformed as time goes by because the topology of deforming meshes are changed. To overcome those problems in modeling and analysis including homogeneous and heterogeneous materials, we suggest a unified modeling and analysis method based on implicit representation of the model using R-function which is suggested by Rvachev. For implicit modeling of an object a distance field is approximated and blended for a complex object. Using the implicit function mesh-free analysis is possible where meshes are not necessary. Generally mesh-free analysis requires heavy computational cost compared to a finite elements method. To improve the computing time of function evaluation, we utilize GPU programming. Finally, we give an example of a simple pipe design problem and show modeling and analysis process using our unified modeling and analysis method.

Function Point Analysis using Goal and Scenario based Requirements (목표 및 시나리오 기반 요구사항을 이용한 기능점수 분석)

  • Choi Soon-Hwang;Kim Jin-Tae;Park Soo-Yong;Han Ji-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.8
    • /
    • pp.655-667
    • /
    • 2006
  • This paper proposes a method for counting function point using goal and scenario based requirements. Function Point is a software sizing method and widely used as a basis to estimate software development cost. Requirements elicitation and analysis should be performed before function point analysis but function point analysis method doesn't deal with requirements elicitation and analysis. For that reason, Function point extraction method from existing requirements method is needed and if the requirements method has advantage for traceability and elicitation, it is suitable for managing cost. Goal and scenario method is widely used as requirements elicitation and analysis. It has also good traceability. Therefore, this paper discusses a method for extracting function point from requirements text gathered using the goal and scenario based requirements elicitation technique. The proposed method aims to establish and maintain traceability between function point and requirements text. Text based function point extraction guidance rules have been developed. The proposed methodology has been applied to Order Processing System development.

INFLUENCE ANALYSIS FOR GENERALIZED ESTIMATING EQUATIONS

  • Jung Kang-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.2
    • /
    • pp.213-224
    • /
    • 2006
  • We investigate the influence of subjects or observations on regression coefficients of generalized estimating equations using the influence function and the derivative influence measures. The influence function for regression coefficients is derived and its sample versions are used for influence analysis. The derivative influence measures under certain perturbation schemes are derived. It can be seen that the influence function method and the derivative influence measures yield the same influence information. An illustrative example in longitudinal data analysis is given and we compare the results provided by the influence function method and the derivative influence measures.

Theoretical Verification on the Motion Error Analysis Method of Hydrostatic Bearing Tables Using a Transfer Function

  • Park, Chun-Hong;Oh, Yoon-Jin;Lee, Chan-Hong;Hong, Joon-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.64-70
    • /
    • 2003
  • A new method using a transfer function is introduced in the present paper for analyzing the motion errors of hydrostatic bearing tables. The relationship between film reaction force in a single-side hydrostatic pad and the form error of guide rail is derived at various spatial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called 'the averaging effect of an oil film' quantitively. It is found that the amplitude of film force is reduced as the spatial frequency increases or the relative width of the pocket is reduced. The motion errors of a multi pad type table are estimated using a transfer function, the form errors of a guide rail and the geometric relationship between the pads. The method is named as the Transfer Function Method (TFM). The motion errors calculated by the TFM show good agreement with the motion errors calculated by the Multi Pad Method considering the entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

Flutter reliability analysis of suspension bridges based on multiplicative dimensional reduction method

  • Guo, Junfeng;Zheng, Shixiong;Zhang, Jin;Zhu, Jinbo;Zhang, Longqi
    • Wind and Structures
    • /
    • v.27 no.3
    • /
    • pp.149-161
    • /
    • 2018
  • A reliability analysis method is proposed in this paper based on the maximum entropy (MaxEnt) principle in which constraints are specified in terms of the fractional moments instead of integer moments. Then a multiplicative dimensional reduction method (M-DRM) is introduced to compute the fractional moments. The method is applicable for both explicit and implicit limit state functions of complex structures. After two examples illustrate the accuracy and efficiency of this method in comparison to the Monte Carlo simulation (MCS), the method is used to analyze the flutter reliability of suspension bridge. The results show that the empirical formula method in which the limit state function is explicitly represented as a function of variables is only a too conservative estimate for flutter reliability analysis but is not accurate adequately. So it is not suitable for reliability analysis of bridge flutter. The actual flutter reliability analysis should be conducted based on a finite element method in which limit state function is implicitly represented as a function of variables. The proposed M-DRM provide an alternate and efficient way to analyze a much more complicated flutter reliability of long span suspension bridge.

Requiremental Function Method based Owner's Requirement in VE Process Application at Planning Stage (기획단계 발주자 요구사항 기반 Requiremental Function Method VE 적용)

  • Park, In-Ji;Son, Myung-Jin;Hyun, Chang-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.123-125
    • /
    • 2012
  • It is the important accurately to identify the needs of our customers in order to success the project. Requirements in the early stages of business is very abstract or not quantitative, and that will cause problems such as cost or schedule changes. Particularly many people are likely to prefer the early stages of the project, because the time of applying VE related cost savings is important. Owner's requirement analysis for project success in the VE process does not easy, and specific ongoing management of the requirement is difficult. Therefore, the analysis and the application of owner's requirements is limited in project process. The purpose of this study is proposed to the RFM technique to supplement the functional analysis on the basis owner's requirements analysis in planning a building project.

  • PDF

Improvement plan for Function Definition using CAFAT in the Construction VE (건설 VE에서 CAFAT을 이용한 기능정의 개선방안)

  • Choi, Chang-Hoon;Kim, Soo-Yong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.3 s.31
    • /
    • pp.102-111
    • /
    • 2006
  • In the analysis of function, which is the core and early phase among the procedure of construction VE Job Plan, the accuracy of function definition directly connects to VE result. However, the method of defining function, which is currently used is not accurate and comprehended or is difficult to utilize it systematically. Also, there is not a clear definition about the function for selecting VE so that many difficulties occur in the organic connection between each of functions in the summarization of function after defining function. Therefore, this study cleared the definition of function and made up any counter measured problem occurred in FAST Diagram later on and suggested CAFAT(Combined Antithetic Function Analysis Technique) in order to induce better phase in functional analysis.

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.