• 제목/요약/키워드: Fully plastic

검색결과 288건 처리시간 0.03초

완전소성해석을 이용한 원형노치 인장시편의 한계하중 및 완전소성응력장 해석 (Limit Load and Fully Plastic Stress Analysis for Circular Notched Plates and Bars Using Fully Plastic Analysis)

  • 오창균;명만식;김윤재;박진무
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1605-1614
    • /
    • 2005
  • For the last four decades, tension test of notched bars has been performed to investigate the effect of stress triaxiality on ductile fracture. To quantify the effect of the notch radius on stress triaxiality, the Bridgman equation is typically used. However, recent works based on detailed finite element analysis have shown that the Bridgman equation is not correct, possibly due to his assumption that strain is constant in the necked ligament. Up to present, no systematic work has been performed on fully plastic stress fields for notched bars in tension. This paper presents fully plastic results for tension of notched bars and plates in plane strain, via finite element limit analysis. The notch radius is systematically varied, covering both un-cracked and cracked cases. Comparison of plastic limit loads with existing solutions shows that existing solutions are accurate for notched plates, but not for notched bars. Accordingly new limit load solutions are given for notched bars. Variations of stress triaxiality with the notch radius and depth are also given, which again indicates that the Bridgman solution for notched bars is not correct and inaccuracy depends on the notch radius and depth.

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior

  • Vatansever, Cuneyt;Kutsal, Kutay
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.767-778
    • /
    • 2018
  • The purpose of this study is to investigate how a fully restrained bolted beam splice affects the connection behavior as a column-tree connection in steel special moment frames under cyclic loading when located within the plastic hinge zone. The impacts of this attachment in protected zone are observed by using nonlinear finite element analyses. This type of splice connection is designed as slip-critical connection and thereby, the possible effects of slippage of the bolts due to a possible loss of pretension in the bolts are also investigated. The 3D models with solid elements that have been developed includes three types of connections which are the connection having fully restrained beam splice located in the plastic hinge location, the connection having fully restrained beam splice located out of the plastic hinge and the connection without beam splice. All connection models satisfied the requirement for the special moment frame connections providing sufficient flexural resistance, determined at column face stated in AISC 341-16. In the connection model having fully restrained beam splice located in the plastic hinge, due to the pretension loss in the bolts, the friction force on the contact surfaces is exceeded, resulting in a relative slip. The reduction in the energy dissipation capacity of the connection is observed to be insignificant. The possibility of the crack occurrence around the bolt holes closest to the column face is found to be higher for the splice connection within the protected zone.

Fully Printed 32-Bit RFID Tag on Plastic Foils

  • 조규진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.66.1-66.1
    • /
    • 2012
  • Although all printed cost-less radio frequency identification (RFID) tags have been considered as a core tool for bringing up a ubiquitous society, the difficulties in integrating thin film transistors (TFTs), diodes and capacitors on plastic foils using a single in-line printing method nullify their roles for the realization of the ubiquitous society1,2. To prove the concept of all printed cost-less RFID tag, the practical degree of the integration of those devices on the plastic foils should be successfully printed to demonstrate multi bit RFID tag. The tag contains key device units such as 13.56 MHz modulating TFT, digital logic gates and 13.56 MHz rectifier to generate and transfer multi bit digital codes via a wireless communication (13.56 MHz). However, those key devices have never been integrated on the plastic foils using printing method yet because the electrical fluctuation of fully printed TFTs and diodes on plastic foils could not be controlled to show the function of desired devices. In this work, fully gravure printing process in printing 13.56 MHz operated 32 bit RFID tags on plastic foils has been demonstrated for the first time to prove all printed RFID tags on plastic foils can wirelessly generate and transfer 32 bit digital codes using the radio frequency of 13.56 MHz. This result proved that the electrical fluctuations of printed TFTs and diodes on plastic foils should be controlled in the range of maximum 20% to properly operate 32 bit RFID tags.

  • PDF

배관에 존재하는 원주방향 표면균열에 대한 파괴거동 해석 (I) -J-적분 예측식 - (Fracture Behavior Estimation for Circumferential Surface Cracked Pipes (I) - J-Integral Estimation Solution -)

  • 김진수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.131-138
    • /
    • 2002
  • This paper provides the fully plastic J solutions for circumferential cracked pipes with inner, semi- elliptical surface cracks, subject to internal pressure and global bending. Solutions are given in the form of two different approaches, the GEF/EPRl approach and the reference stress approach. For the GE/EPRl approach, the plastic influence functions for fully plastic J are tabulated based on extensive 3-D FE calculations using the Ramberg-Osgood (R-O) materials, covering a wide range of pipe and crack geometries. The developed GEf/EPRl-type fully plastic J estimation equations are then re-formulated using the concept of the reference stress approach for wider applications. Based on the FE results, optimized reference load solutions for the definition of the reference stress are found for internal pressure and for global bending. Advantages of the reference stress based approach over the GE/EPRl-type approach are fully discussed. Validation of the proposed reference stress based J estimation equations will be given in Part II, based on 3-D elastic-plastic or elastic creep FE results using typical tensile properties of stainless steels and generalized creep- deformation behaviours.

원관내 Bingham Plastic의 층류 대류 열전달(1)해석적 연구-완전발달유동과 온도분포 발달유동(확장된 그래츠문제) (Laminar Convective Heat Transfer of a Bingham Plastic in a Circular Pipe(I) Analytical approach- thermally fully developed flow and thermally develping flow(the Graetz problem extended))

  • 민태기;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.3991-4002
    • /
    • 1996
  • Thermally fully developed and thermally developing laminar flows of a Bingham plastic in a circular pipe have been studied analytically. For thermally fully developed flow, the Nusselt numbers and temperature profiles are presented in terms of the yield stress and Peclet number, proposing a correlation formula between the Nusselt number and the Peclet number. The solution to the Graetz problem has been obtained by using the method of separation of variables, where the resulting eigenvalue problem is solved approximately by using the method of weighted residuals. The effects of the yield stress, Peclet and Brinkman numbers on the Nusselt number are discussed.

Exact thermoelastoplastic analysis of FGM rotating hollow disks in a linear elastic-fully plastic condition

  • Nadia Alavi;Mohammad Zamani Nejad;Amin Hadi;Anahita Nikeghbalyan
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.377-389
    • /
    • 2024
  • In the present study, thermoelsatoplastic stresses and displacement for rotating hollow disks made of functionally graded materials (FGMs) has been investigated. The linear elastic-fully plastic condition is considered. The material properties except Poisson's ratio are assumed to vary in the radial direction as a power-law function. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the disk. The plastic model is based on the Tresca yield criterion and its associated flow rules under the assumption of perfectly plastic material behavior. Exact solutions of field equations for elastic and plastic deformations are obtained. It is shown that the elastoplastic response of the functionally graded (FG) disk is affected notably by the radial variation of material properties. It is also shown that, depending on material properties and disk dimensions, different modes of plastic deformation may occur.

굽힘 모멘트와 인장 하중이 작용하는 비대칭 노치 시편의 완전 소성 균열 선단 응력의 예측 (Estimation of fully plastic crack tip stresses of unequally notched specimen under bending and tension)

  • 오창균;김윤재;박진무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.37-42
    • /
    • 2004
  • This paper presents a simple method to estimate fully plastic crack tip stresses of unequally notched specimen based on the equilibrium condition of the least upper bounds for plane strain deformation fields. The method is applied to unequally notched specimens under bending and tension. For various notch angle the limit loads and crack tip stresses are estimated from the present method and compared with results from finite element limit analyses.

  • PDF

Constraint-based fracture mechanics analysis of cylinders with internal circumferential cracks

  • Bach, Michael;Wang, Xin
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.131-147
    • /
    • 2013
  • In this paper, constraint-based fracture mechanics analyses of hollow cylinders with internal circumferential crack under tensile loading are conducted. Finite element analyses of the cracked cylinders are carried out to determine the fracture parameters including elastic T-stresses, and fully-plastic J-integrals. Linear elastic finite element analysis is conducted to obtain the T-stresses, and elastic-plastic analysis is conducted to obtain the fully plastic J-integrals. A wide range of cylinder geometries are studied, with cylinder radius ratios of $r_i/r_o$ = 0.2 to 0.8 and crack depth ratio a/t = 0.2 to 0.8. Fully plastic J-integrals are obtained for Ramberg-Osgood power law hardening material of n = 3, 5 and 10. These fracture parameters are then used to construct conventional and constraint-based failure assessment diagrams (FADs) to determine the maximum load carrying capacity of cracked cylinders. It is demonstrated that these tensile loaded cylinders with circumferential cracks are under low constraint conditions, and the load carrying capacity are higher when the low constraint effects are properly accounted for, using constraint-based FADs, comparing to the predictions from the conventional FADs.

연속보 주부재의 조밀 및 비조밀 단면 최적화 설계 (Optimal Design of Continuous Girders Considering Compact and Non-compact Cross-sections)

  • 국중식;신영석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.143-150
    • /
    • 1999
  • The LRFD Specification defines two sets of limiting width-to-thickness ratios. On the basis of these limiting values, steel sections we subdivided into three categories: compact, noncompact, and slender sections. A compact section is capable of developing a fully plastic stress distribution (plastic moment), and can sustain rotations approximately three times beyond the yield before the possibility of local buckling arises. Noncompact sections can develop the yield stress before local buckling occurs. They may not, however, resist local buckling at the strain levels required to develop the fully plastic stress distribution. In this paper, 1-Type girders of a 2 span continuous steel bridge are divided into compact and non-compact sections and analyzed. In the design process, an optimization skill was adopted and ADS, a Fortran program for Automated Design Synthesis, was used.

  • PDF