Today's wireless access networks consist of several tiers that overlap each other. Provisioning of real time undisrupted communication to mobile users, anywhere and anytime through these heterogeneous overlay networks, is a challenging task. We extend the end-to-end approach for the handoff management in hybrid wireless data network by designing a fully mobile-controlled handoff for mobile devices equipped with dual mode interfaces. By handoff, we mean switching the communication between interfaces connected to different subnets. This mobile-controlled handoff scheme reduces the service disruption time during both horizontal and vertical handoffs and does not require any modification in the access networks. We exploit the IP diversity created by the dual interfaces in the overlapping area by simultaneously connecting to different subnets and networks. Power saving is achieved by activating both interfaces only during the handoff period. The performance evaluation of the handoff is carried out by a simple mathematical analysis. The analysis shows that with proper network engineering, exploiting the speed of mobile node and overlapping area between subnets can reduce service disruption and power consumption during handoff significantly. We believe that with more powerful network interfaces our proposal of dual interfaces can be realized.
This paper presents a new method to implement Hebbian learning method on artificial neural network. In hebbian learning algorithm, complexity in terms of multiplications is high. To save the chip area, we consider a new learning circuit. By calculating similarity, or correlation between $X_i$ and $O_i$, large portion of circuits commonly used in conventional neural networks is not necessary for this new hebbian learning circuit named COR. The output signals of COR is applied to weight storage capacitors for direct control the voltages of the capacitors. The weighted sum, ${\Sigma}W_{ij}O_j$, is realized by multipliers, whose output currents are summed up in one line which goes to learning circuit or output circuit. The drain current of the multiplier can produce positive or negative synaptic weights. The pass transistor selects eight learning mode or recall mode. The layout of an learnable six-neuron fully connected Hopfield neural network is designed, and is simulated using PSPICE. The network memorizes, and retrieves the patterns correctly under the existence of minor noises.
In the structural health monitoring field, damage detection has been commonly carried out based on the structural model and the engineering features related to the model. However, the extracted features are often subjected to various errors, which makes the pattern recognition for damage detection still challenging. In this study, an automated damage identification method is presented for hanger cables in a tied-arch bridge using a convolutional neural network (CNN). Raw measurement data for Fourier amplitude spectra (FAS) of acceleration responses are used without a complex data pre-processing for modal identification. A CNN is a kind of deep neural network that typically consists of convolution, pooling, and fully-connected layers. A numerical simulation study was performed for multiple damage detection in the hangers using ambient wind vibration data on the bridge deck. The results show that the current CNN using FAS data performs better under various damage states than the CNN using time-history data and the traditional neural network using FAS. Robustness of the present CNN has been proven under various observational noise levels and wind speeds.
Early-stage diagnosis of Alzheimer's Disease (AD) from Cognitively Normal (CN) patients is crucial because treatment at an early stage of AD can prevent further progress in the AD's severity in the future. Recently, computer-aided diagnosis using magnetic resonance image (MRI) has shown better performance in the classification of AD. However, these methods use a traditional machine learning algorithm that requires supervision and uses a combination of many complicated processes. In recent research, the performance of deep neural networks has outperformed the traditional machine learning algorithms. The ability to learn from the data and extract features on its own makes the neural networks less prone to errors. In this paper, a dense neural network is designed for binary classification of Alzheimer's disease. To create a classifier with better results, we studied result of different activation functions in the prediction. We obtained results from 5-folds validations with combinations of different activation functions and compared with each other, and the one with the best validation score is used to classify the test data. In this experiment, features used to train the model are obtained from the ADNI database after processing them using FreeSurfer software. For 5-folds validation, two groups: AD and CN are classified. The proposed DNN obtained better accuracy than the traditional machine learning algorithms and the compared previous studies for AD vs. CN, AD vs. Mild Cognitive Impairment (MCI), and MCI vs. CN classifications, respectively. This neural network is robust and better.
CNN(Convolutional Neural Network) 알고리즘은 인공신경망 구현에 활용되는 대표적인 알고리즘으로 기존 FNN(Fully connected multi layered Neural Network)의 문제점인 연산의 급격한 증가와 낮은 객체 인식률을 개선하였다. 그러나 IT 기기들의 급격한 발달로 최근 출시된 스마트폰 및 태블릿의 카메라에 촬영되는 이미지들의 최대 해상도는 108MP로 약 1억 8백만 화소이다. 특히 CNN 알고리즘은 고해상도의 단순 이미지를 학습 및 처리에 많은 비용과 시간이 요구된다. 이에 본 논문에서는 고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘을 제안한다. 제안하는 알고리즘은 고해상도의 이미지들의 학습모델 생성 시간을 감소하기 위해 CNN 알고리즘의 풀링계층의 Max Pooling 알고리즘 연산을 위한 인접 행렬 값을 변경한다. 변경한 행렬 값마다 4MP, 8MP, 12MP의 고해상도 이미지들의 처리할 수 있는 학습 모델들을 구현한다. 성능평가 결과, 제안하는 알고리즘의 학습 모델의 생성 시간은 12MP 기준 약 36.26%의 감소하고, 학습 모델의 객체 분류 정확도와 손실률은 기존 모델 대비 약 1% 이내로 오차 범위 안에 포함되어 크게 문제가 되지 않는다. 향후 본 연구에서 사용된 학습 데이터보다 다양한 이미지 종류 및 실제 사진으로 학습 모델을 구현한 실질적인 검증이 필요하다.
본 논문은 목표한 방향으로 자유롭게 기동할 수 있는 새 크기의 물리기반 날갯짓 비행로봇 시뮬레이션을 위한 동역학적 신경망 컨트롤러를 생성하는 통합적인 진화연산 방법을 제시한다. 제안된 진화로봇 시스템은 날갯짓 비행의 추가적인 민첩성과 안정성을 위하여 Morphological Computation 개념을 응용한 간단한 날개 순응성 모델과 그와 통합된 Mechanosensory 정보를 활용한다. 역학적으로 불안정한 날갯짓 기동의 안정성 개선을 위해 로봇의 날개는 회전스프링으로 팔의 골격에 연결된 여러개의 패널들로 모델링되어, 새의 깃털에서 영감을 받은 단순한 형태의 날개 유연성을 시뮬레이션 하도록 설계되었다. 신경망 컨트롤러 역시 생물학적으로 의미있는 좌우대칭적 연결구조를 가짐과 동시에 최대의 진화연산 탐색 가능성을 위해 두 개의 fully-connected 신경망 모듈로 이루어지며, 이를 위한 센서정보로서 항법센서와 더불어 각 날개패널의 움직임 보들이 입력되어진다. 이러한 설계는 각 패널센서로 하여금 잠재적으로 신경망의 날갯짓 패턴 생성에 관여하게 함과 동시에, 날개에 가해지는 힘의 감지와 패널의 굽어짐으로 인한 날개 순응성으로부터 얻을 수 있는 비행의 민첩성과 안정성 향상을 동시에 유도할 수 있다. 본 시스템으로 진화된 날갯짓 로봇은 실시간으로 주어지는 목표방향으로의 효과적인 기동과 함께, 외부의 공기역학적 섭동에 대하여도 더욱 안정적인 비행을 유지함을 보여준다.
본 논문에서는 주목 메커니즘 기반의 심층 신경망을 사용한 음성 감정인식 방법을 제안한다. 제안하는 방식은 CNN(Convolution Neural Networks), GRU(Gated Recurrent Unit), DNN(Deep Neural Networks)의 결합으로 이루어진 심층 신경망 구조와 주목 메커니즘으로 구성된다. 음성의 스펙트로그램에는 감정에 따른 특징적인 패턴이 포함되어 있으므로 제안하는 방식에서는 일반적인 CNN에서 컨벌루션 필터를 tuned Gabor 필터로 사용하는 GCNN(Gabor CNN)을 사용하여 패턴을 효과적으로 모델링한다. 또한 CNN과 FC(Fully-Connected)레이어 기반의 주목 메커니즘을 적용하여 추출된 특징의 맥락 정보를 고려한 주목 가중치를 구해 감정인식에 사용한다. 본 논문에서 제안하는 방식의 검증을 위해 6가지 감정에 대해 인식 실험을 진행하였다. 실험 결과, 제안한 방식이 음성 감정인식에서 기존의 방식보다 더 높은 성능을 보였다.
본 논문에서는 차세대 무선랜 환경으로 고밀도 fully-connected single hop 네트워크 구조를 고려하여 CSMA/CR이라 불리는 분산 MAC 프로토콜을 제안한다. 제안방안은 CSMA/CA 방식을 준수하여 기존 MAC 프로토콜과 호환성을 보장하며, CSMA/CD의 충돌 검출 방식을 무선 상황에 맞게 도입하여 RTS/CTS 사용 없이도 빠른 시간 내에 충돌을 검출할 수 있다. 또한 충돌이 검출되면 다음 전송 시에는 자원을 전용으로 할당하여 추가적으로 발생 가능한 충돌을 해결한다. 아울러 제안 CSMA/CR의 실용화를 위한 구현 이슈를 살펴보고, 대표적인 분산 무선 MAC 프로토콜과 성능비교를 수행한다. 시뮬레이션 결과 제안하는 CSMA/CR은 RTS/CTS 사용 없이 충돌을 발견할 수 있어 오버헤드가 적으며, 충돌 발생 시에는 다음번 전송에 대해서는 예약방식으로 충돌을 없애줌으로써 접속 노드 수에 상관없이 항상 가장 좋은 전송효율을 보여준다.
무선랜을 통해서 대용량 파일, 비디오, 멀티미디어 정보들을 전송해야 함에 따라 quality of service(QoS)를 중요시 하는 응용 프로그램이 많아지므로 무선랜 네트워크에서의 충돌을 해결하기 위한 방법에 대해 연구가 필요하다. CSMA/CD의 충돌 검출 방식을 무선상황에 도입한 distributed MAC 프로토콜인 CSMA/CR[1]에서는 접속 단말 간 공평성은 보장하지만 서비스의 질(QoS)은 고려하지 않았다. 본 논문에서는 포화상태인 fully-connected single hop 네트워크 환경에서 CSMA/CR 프로토콜의 실용화를 위한 충돌 보상 방법을 제안한다. 기존의 CSMA/CR프로토콜은 단말 간 공평성만을 고려하여 CR Slot을 랜덤하게 선택하지만, 본 논문에서는 충돌을 경험한 단말에게는 우선순위를 주어 충돌 보상을 제공하기 위해 CR Slot의 앞쪽 번호를 부여한다. 충돌이 발생한 경우 jam 신호를 전송한 후 채널 우선 사용권을 가지게 되어 성공적인 전송을 보장받을 확률이 높아져 단말 간 우선순위를 보장하고 전송 효율을 높일 수 있다. 본 논문에서 제안하는 방법은 하드웨어 비용의 추가 없이 간단하게 충돌을 경험한 단말에게 혜택을 제공할 수 있다.
3D 손 포즈 추정(Hand Pose Estimation, HPE)은 스마트 인간 컴퓨터 인터페이스를 위해서 중요한 기술이다. 이 연구에서는 딥러닝 방법을 기반으로 하여 단일 RGB-Depth 카메라로 촬영한 양손의 3D 손 자세를 실시간으로 인식하는 손 포즈 추정 시스템을 제시한다. 손 포즈 추정 시스템은 4단계로 구성된다. 첫째, Skin Detection 및 Depth cutting 알고리즘을 사용하여 양손을 RGB와 깊이 영상에서 감지하고 추출한다. 둘째, Convolutional Neural Network(CNN) Classifier는 오른손과 왼손을 구별하는데 사용된다. CNN Classifier 는 3개의 convolution layer와 2개의 Fully-Connected Layer로 구성되어 있으며, 추출된 깊이 영상을 입력으로 사용한다. 셋째, 학습된 CNN regressor는 추출된 왼쪽 및 오른쪽 손의 깊이 영상에서 손 관절을 추정하기 위해 다수의 Convolutional Layers, Pooling Layers, Fully Connected Layers로 구성된다. CNN classifier와 regressor는 22,000개 깊이 영상 데이터셋으로 학습된다. 마지막으로, 각 손의 3D 손 자세는 추정된 손 관절 정보로부터 재구성된다. 테스트 결과, CNN classifier는 오른쪽 손과 왼쪽 손을 96.9%의 정확도로 구별할 수 있으며, CNN regressor는 형균 8.48mm의 오차 범위로 3D 손 관절 정보를 추정할 수 있다. 본 연구에서 제안하는 손 포즈 추정 시스템은 가상 현실(virtual reality, VR), 증강 현실(Augmented Reality, AR) 및 융합 현실 (Mixed Reality, MR) 응용 프로그램을 포함한 다양한 응용 분야에서 사용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.