• Title/Summary/Keyword: Fully Developed Region

Search Result 122, Processing Time 0.021 seconds

Flow Characteristics of Turbulent Flow in the Exit Region of Join Stream Curved Duct (합류 곡관덕트 출구영역에서 난류유동의 유동특성)

  • Sohn, Hyun-Chull;Park, Sang-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.569-578
    • /
    • 2003
  • In the present steady the flow characteristics of turbulent steady flows were experimentally investigated in the exit region of join stream. The experimental was carry out to measure the velocity profiles of air in a square duct. For the measurement of velocity profiles, a hot-wire anemometer was used. The experimental results shows that the velocity profiles do not change behind the fully developed flow region , which is defined as dimensionless axial direction x/Dh=50. In addition, the gradient of shear stress distribution became stable as the flow reached progress downstream.

Drag Reducton of Pipe Wall For Fluid Flow due to Injected Polymer Solution - III. Consideration of Entrance Region Flow of Drag Reducing Fluids- (고분자용액에 의한 유체수송관벽의 저항감소 -III. 저항감소유체의 입구흐름 영역에 대한 고찰-)

  • 김영보;유경옥
    • Fire Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.21-35
    • /
    • 1991
  • As a part of studies of drag reduction phenomenon, at the entrance flow region of abrupt contraction tube flowing water, dilute and concentrated drag reducing polymer solutions contraction losses are estimated experimentally. Futher more, entrance lengths are considered theoretically and are measured experimentally. In the present experiment, fluid temperature is fixed l$0^{\circ}C$ and flow rates are 3,000

  • PDF

A Study on the Viscous Inverse Method for the High Speed Axisymmetric Body Design (고속 축대칭 비행체 설계를 위한 점성 Inverse 기법 연구)

  • Lee Young-Ki;Lee Jaewoo
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.35-43
    • /
    • 1997
  • An efficient inverse method for 1.he supersonic/hypersonic axisymmetric body design is developed for the parabolized Navier-Stokes equations. The developed method is examined numerically for three extreme testcases in the supersonic(M/sub ∞/=3.0) and hypersonic(M/sub ∞/=6.28) speeds. The first one is a negative pressure distribution near a vacuum pressure and the second one is a positive pressure distribution over the whole region of the body. The last one is the case of abrupt change of pressure distribution to zero in the forward region of the body. These testcases show the robustness of the method. By introducing a regular-falsi method and by using a not-fully converged inverse solution, the convergence behavior was greatly improved.

  • PDF

Laminar Flow in the Entrance Region of Helical Tubes Connected with Straight Ones (직관과 연결된 나선관 입구영역의 층류 유동)

  • Kim, Young-In;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • A numerical study for three-dimensional laminar flow in the entrance region of helical tubes connected with straight ones is carried out to investigate the effects of Reynolds number, pitch and curvature ratio on the oscillation periods of the flow. The fully elliptic governing equations were solved by means of a finite volume method. The fully developed laminar flow boundary condition was applied at the straight tube inlet. This results cover a curvature ratio range of 1/10${\sim}$1/320, a pitch range of 0.0${\sim}$3.2, and a Reynolds number range of 62.5${\sim}$2000. A comparison is made with previous experimental correlations and numerical data. The developments of velocity, local and average friction factors are discussed. The average friction factors are oscillatory in the entrance region of helical pipes. It has been found that the angle required for the flow to be similarly developed is most affected by the curvature ratio. The pitch and Reynolds number do not have any significant effect on the angle. The characteristic angle ${\phi}_c(={\phi}/sqrt{\delta})$, or the characteristic length to diameter ratio $s_c(=l\sqrt{\delta} cos(atan{\lambda})/d)$, can be useful to represent the development of flow in helical tubes. As the pitch increases and as the curvature ratio and Reynolds number decrease, the amplitude and the number of flow oscillations along the main streamwise direction decrease.

Turbulent flow in annuli depending on the position of roughness (거칠기 위치에 따른 이중관 내의 난류유동)

  • An, Su-Hwan;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.891-899
    • /
    • 1997
  • This paper presents the results of a detailed experimental examination of fully developed asymmetric flows between annular tubes with square-ribbed surface roughness. The main emphasis of the research has been on establishing the turbulence structure, particularly in the central region of the channel where the two dissimilar wall flows interact. Measurements have included profiles of time mean velocities, turbulence intensities, turbulent shear stresses, triple velocity correlations, skewness, and flatness. The region of greatest interaction is characterized by strong diffusional transport of turbulent shear stress and kinetic energy from rough toward the smooth wall region, giving rise to an appreciable separation between the planes of zero shear stresses depending on positions of roughness on the walls.

A Study on The Characteristics of the 2-Dimensional Jet (2차원 분류특성에 관한 연구)

  • Kim, Kyung-Hoon;Park, Sang-Kyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.43-51
    • /
    • 1989
  • Free jet was investigated experimentally and numerically in range of Reynolds number from 9900 to 21000. The working fluid was air; the mean velocity components and turbulent quantities were measured by a hot-wire anemometer. In numerical computations, the governing partial differential equations of elliptic type were solved with conventional k- ${\epsilon}$ turbulence model. The measurements show that the jet increased linearly in flow direction, and that similarity for each turbulent quantity such as Reynolds shear stress, or turbulent kinetic energy was revealed in the fully developed region. The computational results show good agreements with experiments.

  • PDF

Fourier integral approach to the analysis of optical waveguides (푸리에 적분 방식에 의한 광도파도의 해석)

  • Lee, Jae-Seung;Shin, Sang-Yung
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.398-400
    • /
    • 1987
  • Using the transmission line model, we have developed a formalism which is fairly accurate and convenient for analyzing the dispersion characteristics of rectangular dielectric waveguides for integrated optics. The fields in open half space regions are expressed as a Fourier integral form. Including all the TE and TM polarized discrete modes in slab waveguide region, our calculation shows that the discrepancies between the previous vectorial wave analysis using one discrete mode and the brute-force numerical analysis for the rectangular dielectric waveguides can be fully reduced with this method.

  • PDF

DYNAMIC STALL PREDICTION WITH TRANSITION OVER AN OSCILLATING AIRFOIL (천이를 고려한 진동하는 익형의 동적 실속 예측)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Kim, Chang-Joo;Chung, Ki-Hoon;Jung, Kyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.358-361
    • /
    • 2010
  • A Reynolds-Averaged Navier-Stokes (RANS) code with transition prediction model is developed and the computational results on an oscillating airfoil are compared with the experimental data for OA209 airfoil. An approximated eN method that can predict transition onset points and the length of transition region is directly applied to the RANS code. The hysteresis loop in dynamic stall is compared for the computational results using transition prediction and fully turbulent models with the experimental data. Results with transition prediction show more correlation with the experimental data than the fully turbulent computation.

  • PDF

Numerical Analysis of Shallow Water Equation with Fully Implicit Method (음해법을 이용한 천수방정식의 수치해석)

  • Kang, Ju Whan;Park, Sang Hyun;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.119-127
    • /
    • 1993
  • Recently, ADI scheme has been a most common tool for solving shallow water equation numerically. But ADI models of tidal flow is likely to cause so called ADI effect in such a region of the Yellow Sea which shows complex topography and has submarine canyons especially. To overcome this, a finite difference algorithm is developed which adopts fully implicit method and preconditioned conjugate gradient squared method. Applying the algorithm including simulation of intertidal zone to Sae-Man-Keum. velocity fields and flooding/drying phenomena are simulated well in spite of complex topography.

  • PDF

A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe

  • Choi, Chang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2230-2241
    • /
    • 2006
  • This paper presents a sole application of boundary element method to the conjugate heat transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid region and heat convection in the fluid region, two separate solutions in the solid and fluid regions are sought to match the solid-fluid interface continuity condition. In this method, the dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme is used to solve the heat convection problem and the conventional boundary element method (BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and numerically stable BEM solution algorithm is presented, which uses the coupled interface conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and updated as the unknown interface thermal conditions in the iterative solution procedure. Two examples imposing uniform temperature and heat flux boundary conditions are tested in thermally developing region and compared with analytic solutions where available. The benchmark test results are shown to be in good agreement with the analytic solutions for both examples with different boundary conditions.