• 제목/요약/키워드: Full-cycle system

검색결과 159건 처리시간 0.024초

도시철도 차량에서 LCC 분석의 기본 절차에 관한 연구 (A Study on the Basic Procedure of LCC Analysis for the Urban Transit Vehicle)

  • 정광우;전영석;안준용;김철수;정종덕
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.643-652
    • /
    • 2009
  • This paper presents brief history and a state-of-the-art survey of Life Cycle Cost (LCC) analysis, in particular LCC analysis in the Urban Transit Vehicle, based on a internationl codes and standards related to LCC analysis. A main objective of the LCC analysis is to quantify the total cost of ownership of a product throughout its full life cycle, which includes research and development, construction, operation and maintenance, and disposal. The predicted LCC is useful information for decision making in purchasing a product, in optimizing design, in scheduling maintenance, or in planning overhaul. This paper presents a LCC procedure consisting of seven steps, which are "Problems definition", "Cost elements definition", "System modeling", "Data collection", "Cost profile development", "Evaluation", and "Verification". Sub-activities to be encompassed in the seven steps procedure are described.

  • PDF

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.

A Performance Comparison of the Current Feedback Schemes with a New Single Current Sensor Technique for Single-Phase Full-Bridge Inverters

  • Choe, Jung-Muk;Lee, Young-Jin;Cho, Younghoon;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.621-630
    • /
    • 2016
  • In this paper, a single current sensor technique (SCST) is proposed for single-phase full-bridge inverters. The proposed SCST measures the currents of multiple branches at the same time, and reconstructs the average inductor, capacitor, and load current in a single switching cycle. Since all of the branches' current in the LC filter and the load are obtained using the SCST, both the inductor and the capacitor current feedback schemes can be selectively applied while taking advantages of each other. This paper also analyzes both of the current feedback schemes from the view point of the closed-loop output impedance. The proposed SCST and the analysis in this paper are verified through experiments on a 3kVA single-phase uninterruptible power supply (UPS).

Implementing Balanced Scorecard with System Dynamics Approach

  • Yoon, Joseph Y. K.
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2000년도 춘계공동학술대회 논문집
    • /
    • pp.330-336
    • /
    • 2000
  • This paper discusses the potential of system dynamics modelling to support balanced scorecard. The balanced scorecard is a conceptual framework for translating an organisation's strategy into a set of performance indicators. These performance indicators are distributed across the 'classic'model's four perspective: Customers, Internal Business Processes, Financial, and Learning and Growth. This balanced scorecard, whilst having significant strength, suffers from the limitation of all performance indicator systems, namely that the interrelationships between indicators are overlooked and there is no way of taking into account the impact of delayed feedback which flows from introduction of new policy and legislative changes. System Dynamics is a methodology for understanding complex problems where there is dynamic behaviour and where feedback impacts significantly on system outcomes. System dynamics provides a rigorous basis for qualitative testing of the effects of performance indicators in complex environments such as health or social security. This can be supplemented with quantitative system dynamics simulation tools that further test the validity of indicators and the business rules implicit in them. System dynamics modelling has an important role to play in extending feedback cycle in performance measurements to a full systems approach.

  • PDF

전력 케이블 실시간 허용전류산정 시스템에 관한 연구 (I) - 실시간 도체 온도 추정 시스템 (A Dynamic Rating System for Power Cables (I) - Real Time CTM(Conductor Temperature Monitoring))

  • 남석현;이수길;홍진영;김정년;정성환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.414-420
    • /
    • 2003
  • The domestic needs for larger capability of power sources are increasing to cope with the expanding power load which results from the industrial developments & the progressed life style. In summer, the peak load is mainly due to the non-industrial reasons such as air-conditioners and other cooling equipments. To cover the concentrated peak load in stable, the power transmission lines should be more constructed and efficiently operated. The ampacity design of the underground cable system is generally following international standards such as IEC287, IEC60853 and JCS168 which regards the shape of 100% daily full power loads. It is not so efficient to neglect the real shapes of load curves generally below 60~70% of full load. The dynamic (real time) rating system tends to be used with the measured thermal parameters which make it possible to calculate the maximum ampacity within required periods. In this paper, the CTM(Conductor Temperature Monitoring) which is the base of dynamic rating systems for tunnel environment is proposed by a design of lumped thermal network ($\pi$-type thermal model) and distribution temperature sensor attached configuration, including the estimation results of its performances by load cycle test on 345kV single phase XLPE cable.

중저준위 방사성폐기물 전주기 이력관리체계 구축 및 개선 (The Establishment and Improvement of Full Cycle History Management System for Low- and Intermediate-level Radioactive Waste)

  • 이진우;이준;은희철;정지영
    • 방사선산업학회지
    • /
    • 제18권1호
    • /
    • pp.95-100
    • /
    • 2024
  • To establish a radioactive waste life cycle history management system, a series of processes including waste generation, classification, packaging, storage, transportation, and disposal were reflected in the information management system. A preliminary review process was introduced to reduce the amount of radioactive waste generated and manage it efficiently. Through this, the amount of radioactive waste generated must be checked from the beginning of the research, and the generated radioactive waste must be thoroughly managed from the stage of generation to final disposal. In particular, in the case of radioactive waste data generated during nuclear facility operation and each experiment, a radioactive waste information management system must be operated to receive information from the waste generator and integrate it with processing information at the management stage. The application process for small-package containers was reflected so that information such as the generation facility of radioactive waste, generation facility, project information, types of radioactive waste, major radionuclides, etc. In the radioactive waste management process, the preceding steps are to receive waste history from the waste generators. This includes an application for a specified container with a QR label, pre-inspection, and management request. Next, the succeeding steps consist of repackaging, treatment, characterization, and evaluating the suitability of disposal, for a process to transparently manage radioactive wastes.

얼굴인식을 위한 실시간 하드웨어 설계 (A Realtime Hardware Design for Face Detection)

  • 서기범;차선태
    • 한국정보통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.397-404
    • /
    • 2013
  • 본 논문에서는 Adaboost알고리즘을 이용한 얼굴인식 하드웨어 시스템의 구조를 제안하였다. 제안된 하드에어 구조는 초당 30프레임을 가지며 실시간 처리가 가능하다. 또한 Adaboost알고리즘을 이용하여 얼굴 특징 데이터를 학습하였고, 영상 크기 축소부와 적분 영상 추출부 그리고 얼굴 비교부, 메모리 인터페이스부, 데이터 그룹화, 검출결과 표시부 등으로 구성되었다. 제안된 하드웨어 구조는 사이클당 1포인트를 계산 할 수 있는 구조로 속도의 향상을 가져오며 full HD($1920{\times}1080$)의 경우에는 총 사이클 수 $2,316,087{\times}30=69,482,610$로 약 70MHz의 속도를 가진다. 제안된 하드웨어 구조는 Verilog HDL로 디자인되었고, Mentor Graphics Modelsim을 이용하여 검증하였으며, 합성은 FPGA Xilinx Virtex5 XC5VLX330을 이용하여 칩의 대략 35%인 74,757 Slice LUT와 45MHz의 주파수에서 동작한다.

근로시간 및 교대근무편성의 문제점과 개선방향 (Problems of Working Hours and Shift Work Systems, and Propsed Methods for Their Improvement)

  • 서유진;;박영만;문세근
    • 대한인간공학회지
    • /
    • 제22권3호
    • /
    • pp.13-26
    • /
    • 2003
  • The purpose of this study is to investigate the present conditions of the night work and shift work systems in the heavy chemical industrial complexes found in Changwon, Masan, and Chinhae. Korea. We will attempt to define and classify their problems; and to discover further ways to improve their systems. Fifty production factories were carefully selected as the subjects for this study. The shift systems were classified into five categories. The consecutive night shifts were long in almost all cases with 6 days (36 factories) and 7 days (13 factories). It was found that the night work of about] 2 hours continues for a long period in the weekly rotation full-day shift systems and the night-including non-full-day shift systems, and there was no holiday during a shift cycle in the continuous full-day shift systems. The work time in most shift systems was longer than the 44-hours/week permitted by Korean law. Considering the characteristics of these various types of shift systems, the most essential thing to reduce the shift workers' work load may be to shorten their working hours and improve the schedule of shift systems. It is highly recommended as a fundamental solution. to reduce the portal-to-portal hours from 12 to 8 in the night-including non-full-day shift systems and the weekly rotation full-day shift systems, and at least to employ a 4-team 3-shift system in the continuous full-day shift systems. In addition to this, it should from now on be taken as a goal to restructure the types of shift systems by taking such measures as avoiding continuous night work if possible, providing sufficient off-duty intervals both before and after night shift, providing increased opportunities for workers to nap during night work. and increasing the number of holidays.

실내 무선측위/통신을 위한 IEEE 802.15.4a IR-UWB 시스템 설계 (IEEE 802.15.4a IR-UWB System Design for Indoor Ranging and Communications)

  • 오미경;박주호;오정열;길민수;김재영
    • 대한임베디드공학회논문지
    • /
    • 제4권1호
    • /
    • pp.16-22
    • /
    • 2009
  • This paper aims at designing an impulse-radio ultra-wideband (IR-UWB) transceiver, especially targeting the IEEE 802.15.4a indoor ranging and communication systems. We first investigate the IEEE 802.15.4a IR-UWB signals and suggest the full-digital transceiver architecture accordingly. Since the wireless systems equipped with the impulse signal have the property of low-duty cycle, i.e., discontinuity in time, while the conventional systems takes the continuous signals, it is required to reconfigure the system design, including link budget. Following brief introduction to our IEEE 802.15.4a IR-UWB system hardware, we finally examine the ranging performance in indoor environments to verify our system design.

  • PDF

Progress of Applications and Studies on Earthquake Resistance Design of Bridges in Korea

  • 하동호;고현무;옥승용;이선영
    • 한국지진공학회논문집
    • /
    • 제11권4호
    • /
    • pp.33-42
    • /
    • 2007
  • This paper describes the state-of-the art research activities on seismic isolation systems for improving the seismic capacities of the bridges in Korea. Though Korea is located in a region of low-to-moderate seismicity, the construction of seismic isolation systems has increased rapidly. The application of seismic isolation system has become popular worldwide because of its stable behavior and economical construction especially for bridge structures. Since optimal reliability level of isolated bridges can be determined as the one that provides the highest net life-cycle benefit to society, or the minimum Life-Cycle Cost (LCC), an optimal design procedure based on minimum LCC concept is more expedient for the design of seismically isolated bridges in areas of low-to-moderate seismicty. To verify the adequacy of the new design concept based on the LCC minimization, experimental studies on seismically isolated bridge are introduced as well, which include pseudo-dynamic test of scaled pier and dynamic field test of full-scale. With the application of seismic isolation systems, many kinds of dampers to improve the seismic capacity of structure are also applied not only to new bridges but also to existing bridges.