• Title/Summary/Keyword: Full-bridge DC-DC Converter

Search Result 311, Processing Time 0.031 seconds

A Study on the Digital Control of a ZVS-Full Bridge Converter (ZVS-Full Bridge Converter의 디지털 제어에 관한 연구)

  • 최현식;이재학
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.96-102
    • /
    • 1998
  • This paper describes the design of the digital controller for Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS). Although digital control techniques are widely used in the area of inverters and motor drives, their use for the control of high-frequency switching power supply is still rare. Therefore, this paper presents design method of digital controller of Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS) and compares with conventional analog controller. The controller design is optimized by running computer simulation with the MATLAB numerical calculation package.

  • PDF

EMI and Switching Loss Reductions of a Full -Bridge PWM Converter for DC Motor Drive

  • Naoya, Yokoyama;Ishimatzu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.46.4-46
    • /
    • 2001
  • This paper presents a Five-Switch Converter (FSC) circuit that can operate like a full-bridge PWM converter for driving the DC motor in bidirectional. One of the main advantages of this circuit is to reduce the on-off switching number of power MOSFET. In stead of turning on-off simultaneously two of the four power MOSFET´s in a switching period, this circuit operates only one power MOSFET, while continuously leaving another two on and the other two off in the switching period. Consequently ...

  • PDF

A Study on AC/DC Full Bridge Converter With Single Stage Circuit (단일전력단으로 구성된 AC/DC 풀 브리지 컨버터에 관한 연구)

  • Ahn, Byung-Moo;Kim, Yong;Kim, Pil-Soo;Lim, Nam-Hyuk;Chang, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1296-1299
    • /
    • 2000
  • A single stage AC/DC converter based on a full bridge topology suitable for high frequency soft switching converter applications is proposed. The proposed converter has high power factor, zero voltage switching, low noise and high efficiency. A pulse width modulation control is employed to reduce the switching and rectification losses respectively. This proposal converter has simple structure and low cost, The modelling and detailed analysis are performed to derive the design equations, a prototype converter has been designed and experimented. The new converter is attractive for high-voltage, high-power applications where IGBT's are predominantly used as the power switches. The principle of operation, features, and design are verified on a 1.5kW, 30kHz, IGBT based experimental circuit.

  • PDF

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Kim, Keun-Young;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.384-387
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation (PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought must desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

A Study on DC-DC Converter for X-Ray Using Soft-Switching Method (소프트 스위칭 방식을 이용한 X-Ray용 DC-DC Converter에 관한 연구)

  • Kim, Hack-Seong;Kim, Hyen-Joon;Won, Chung-Yuen;Yoo, Dong-Wook;Ha, Sung-Woon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.379-381
    • /
    • 1994
  • This paper is concerned with a zero-voltage soft-switching PWM DC-DC high-pelter converter using IGBTs, which Bakes the most of the parastic LC parameters of high-voltage transformer link, for diagnostic X-Ray power generator. The converter circuit basically utilizes phase-shift pulse width modulated series resonant full-bridge PWM DC-DC high-Power converter operating at a constant frequency:20kHz. This technique brings about dramatic decreases in the switching losses of power devices and their electrical stresses as compared with the commonly-used hard-switching PWM DC-DC power converter. The high-frequency switching operation of the converters has some effective advantages, which consist in the physical reduction in size and weight and lowered acoustic noise.

  • PDF

Bi-directional DC-DC Converter Design and Control for Fuel Cell System (연료전지 시스템용 양방향 DC-DC컨버터 설계 및 제어)

  • Kim Sung Ho;Jang Han Keun;Jang Su Jin;Won Chung Yuen;Kim yoon ho
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.479-483
    • /
    • 2004
  • Fuel Cell (FC) has slow response characteristic for load variation. During a load step, the inverter cannot pull more power from the fuel cell than is currently available so supplemental power must be provide by some sort of energy storage elements. In this paper, hi-directional do-dc converter for FC generation system is proposed to improve load response characteristic. The hi-directional converter interfaces the low voltage battery to the inverter dc link of FC generation system. The converter is based on a active full bridge in the primary side and on a half bridge in the secondary of a high frequency isolation transformer. The complete operating principles and simulation results in presented.

  • PDF

Development of the Power Supply with Reduced Conduction Loss and Switching Stress on the Full-Bridge DC-DC Converter (풀브리지 DC-DC 컨버터의 도전손실과 스위칭 스트레스를 저감한 전원장치 개발)

  • Ra Byung-Hun;Song Dae-Hyun;Kim Kwang-Tae;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.608-611
    • /
    • 2001
  • This paper is indicating the problems, which are the conduction loss on the high frequency transformer, the protection of rectification diode as the snubber loss and the stress of switching main devices, as be made high current and high speed in the phase-shift switching full-bridge DC-DC converter is used the power supply's main circuit of high capacity. In this paper, to improve those problems, it is proposed that is the resonant circuit auxiliary can be reduced conduction losses and stabilized output control. And, it is constructed prototype of the power supply as the result of computer simulations.

  • PDF

A Study on Efficiency Improvement of F-B Converter with Phase-shifted control method (위상이동 제어 방식을 이용한 풀브리지 컨버터의 효율개선에 관한 연구)

  • Suh, Jai-Kwang;Kim, Yong;Baek, Soo-Hyun;Kwan, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2685-2687
    • /
    • 1999
  • This paper is concerned on developing DC-DC converter. In contrast to resonant converter, this converter requires no external resonant elements and operates with constant switching frequency. In conventional PWM converter, two MOSFET switches of the converter are simultaneously turned on and turned off. In presented converter, to achieve Zero Voltage Switching, the two legs of the bridge are operated DC-DC converter is phase shifted. Phase shifted Full Bridge ZVS PWM Converter have an effect on the power system. Operation principle and features are illustrated by the experiment results from 50W, 250kHz with MOSFET switch.

  • PDF

New Single Stage Power Factor Correction AC/DC Converter based on Zero Voltage Switching Full Bridge Topology (영전압 스위칭 풀 브릿지 토폴로지를 기반으로 한 새로운 단일 전력 단 역률개선 AC/DC 컨버터)

  • Kim T.S;Koo G.B;Moon G.W.;Youn M.J
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.352-357
    • /
    • 2003
  • A new single stage power factor correction(PFC) AC/DC converter based on zero voltage switching(ZVS) full bridge topology is proposed. Since the series-connected two transformers act as both output inductor and main transformer by turns, the proposed converter has a wide ZVS range without additional devices for ZVS. Furthermore, since there is no need to use an output inductor, the proposed converter features high power density. The proposed converter gives the good power factor correction and low line current harmonics distortion. A mode analysis and experiment results are presented to verify the validity of the proposed converter.

  • PDF