• Title/Summary/Keyword: Full-aperture processing

Search Result 11, Processing Time 0.026 seconds

A Modified FSA Technique Using Full-aperture for SAR Spotlight Mode (SAR 집중조사모드를 위해 전 개구면을 사용하는 수정된 FSA 기법)

  • Jung, Young-Kwang;Ra, Won-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.921-932
    • /
    • 2016
  • In this paper, a modified FSA(Frequency Scaling Algorithm) is proposed for KOMPSAT-5 high-resolution SAR image generation. In order to enhance performance of azimuth compression, degraded in sub-aperture processing due to the imperfect geometric parameter of data acquisition, the full-aperture signal processing algorithm is designed based on the exact time-frequency analysis. In addition, an azimuth scaling function is newly devised to make the full-aperture processing algorithm suitable for KOMPSAT-5 sliding-spotlight mode. Different from the previous sub-aperture FSA schemes, the suggested technique could accommodate the merit of unified signal processing structure regardless of operational modes of KOMPSAT-5. Through the point target simulation, it is verified that the suggested algorithm provides superior performance of azimuth compression over the existing full-aperture processing methods. The experimental results using real data acquired by KOMPSAT-5 are also given to demonstrate the effectiveness of our scheme as well.

Improve object recognition using UWB SAR imaging with compressed sensing

  • Pham, The Hien;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.76-82
    • /
    • 2021
  • In this paper, the compressed sensing basic pursuit denoise algorithm adopted to synthetic aperture radar imaging is investigated to improve the object recognition. From the incomplete data sets for image processing, the compressed sensing algorithm had been integrated to recover the data before the conventional back- projection algorithm was involved to obtain the synthetic aperture radar images. This method can lead to the reduction of measurement events while scanning the objects. An ultra-wideband radar scheme using a stripmap synthetic aperture radar algorithm was utilized to detect objects hidden behind the box. The Ultra-Wideband radar system with 3.1~4.8 GHz broadband and UWB antenna were implemented to transmit and receive signal data of two conductive cylinders located inside the paper box. The results confirmed that the images can be reconstructed by using a 30% randomly selected dataset without noticeable distortion compared to the images generated by full data using the conventional back-projection algorithm.

Implementation of a Coded Aperture Imaging System for Gamma Measurement and Experimental Feasibility Tests

  • Kim, Kwangdon;Lee, Hakjae;Jang, Jinwook;Chung, Yonghyun;Lee, Donghoon;Park, Chanwoo;Joung, Jinhun;Kim, Yongkwon;Lee, Kisung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.66-70
    • /
    • 2017
  • Radioactive materials are used in medicine, non-destructive testing, and nuclear plants. Source localization is especially important during nuclear decommissioning and decontamination because the actual location of the radioactive source within nuclear waste is often unknown. The coded-aperture imaging technique started with space exploration and moved into X-ray and gamma ray imaging, which have imaging process characteristics similar to each other. In this study, we simulated $21{\times}21$ and $37{\times}37$ coded aperture collimators based on a modified uniformly redundant array (MURA) pattern to make a gamma imaging system that can localize a gamma-ray source. We designed a $21{\times}21$ coded aperture collimator that matches our gamma imaging detector and did feasibility experiments with the coded aperture imaging system. We evaluated the performance of each collimator, from 2 mm to 10 mm thicknesses (at 2 mm intervals) using root mean square error (RMSE) and sensitivity in a simulation. In experimental results, the full width half maximum (FWHM) of the point source was $5.09^{\circ}$ at the center and $4.82^{\circ}$ at the location of the source was $9^{\circ}$. We will continue to improve the decoding algorithm and optimize the collimator for high-energy gamma rays emitted from a nuclear power plant.

Development of Small SAR System and Signal Processing Algorithm for Full-Polarization Data Acquisition with 30 cm Resolution (30 cm급 완전편파 데이터 획득을 위한 소형 SAR 시스템 개발 및 신호처리)

  • Song, Jung-Hwan;Jung, Chul-Ho;Choi, Jong-Joon;Kim, Jin-Soo;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.707-721
    • /
    • 2018
  • In this paper, a small synthetic aperture radar(SAR) system with 30 cm resolution is proposed, and a RAW data-based Doppler parameter estimation and motion compensation algorithm is described in detail. Acquisition of both PolSAR and InSAR data are enabled because there are two channels each in the transmitter and receiver modules. Automotive-based field work is performed to obtain PolSAR data, and signal processing results are ultimately obtained. A motion compensation algorithm is used to mitigate the residual phase error due to platform oscillation, and improved performance is obtained with the motion compensation algorithm using the automotive field test data.

Real-time Measurement of Full Field Retardation Near Quarter Wavelength

  • Liu, Longhai;Zeng, Aijun;Yuan, Qiao;Zhu, Linglin;Fang, Ruifang;Huang, Huijie
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.457-461
    • /
    • 2012
  • A real-time method to measure full field retardation near quarter wavelength is proposed. The circularly polarized beam passes through a sample with a large aperture. The measuring beam then goes through a quarter-wave plate and is then split by a Wollaston prism. An image with two sub-images is then detected by a high-speed image sensor. The full field retardation near quarter wavelength can be obtained in real time by processing the image. The measured retardation is independent of the fast axis angle of the sample and the fluctuation of the initial intensity. In experiments, a wedge waveplate is measured with different fast axis angle and initial intensity, and the full field retardations are acquired. The maximum and standard deviation of the full field retardation is $1.5^{\circ}$ and $0.4^{\circ}$. The validity of the method is verified.

Preliminary Simulation on Spaceborne Sparse Array Millimeter Wave Radar for GMTI

  • Kang, Xueyan;Zhang, Yunhua
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.322-327
    • /
    • 2010
  • Spaceborne sparse array radar for ground moving targets indication (GMTI) has outstanding advantage over full array radar for constructing ultra-large aperture. Rapid development of millimeter wave (MMW) technology make it possible for realizing MMW GMTI radar, which is much more sensitive to slow moving ground target. The paper presented the system model of a multi-carrier frequency sparse array MMW radar as well as preliminary simulation results, which showed future application of the system is very promising.

Omni Scanning DPCA using Two Passive Antennas with Vertical Separation

  • Kim Man-Jo;Kho Bo-Yeon;Yoon Sang-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.229-234
    • /
    • 2006
  • In tactical theater, it is crucial to detect ground moving targets and to locate them precisely. This problem can be resolved by using SAR (Synthetic Aperture Radar) sensors providing GMTI (Ground Moving Target Indication) capability. In general, to implement a robust GMTI sensor is not simple because of the strong competitions between target signals and clutter signals from the ground, and low speed of moving targets. Contrary to the case that a delay canceller is mostly suitable for ground surveillance radars, DPCA (Displaced Phase Centered Antenna) or STAP (Space Time Adaptive Processing) techniques have been widely adapted for GMTI function of modern airborne radars. In this paper, a new scheme of DPCA using two passive antennas with vertical separation is proposed, which also provides good clutter cancellation performance. The proposed scheme realizes full azimuth coverage for DPCA operation on an airborne platform, which is impossible with classical DPCA configuration. Simulations using various conditions have been performed to validate the proposed scheme, and the results are acceptable.

Radarsat-1 ScanSAR Quick-look Signal Processing and Demonstration Using SPECAN Algorithm (SPECAN 알고리즘을 이용한 Radatsat-1 ScanSAR Quick-look 신호 처리 및 검증 알고리즘 구현)

  • Song, Jung-Hwan;Lee, Woo-Kyung;Kim, Dong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • As the performance of the spaceborne SAR has been dramatically enhanced and demonstrated through advanced missions such as TerraSAR and LRO(Lunar Reconnaissance Orbiter), the need for highly sophisticated and efficient SAR processor is also highlighted. In Korea, the activity of SAR researches has been mainly concerned with SAR image applications and the current SAR raw data studies are mostly limited to stripmap mode cases. The first Korean spaceborne SAR is scheduled to be operational from 2010 and expected to deliver vast amount of SAR raw data acquired from multiple operational scenarios including ScanSAR mode. Hence there will be an increasing demand to implement ground processing systems that enable to analyze the acquired ScanSAR data and generate corresponding images. In this paper, we have developed an efficient ScanSAR processor that can be directly applied to spaceborne ScanSAR mode data. The SPECAN(Spectrum Analysis) algorithm is employed for this purpose and its performance is verified through RADARSAT-1 ScanSAR raw data taken over Korean peninsular. An efficient quick-look processing is carried out to produce a wide-swath SAR image and compared with the conventional RDA processing case.

A Quality-control Experiment Involving an Optical Televiewer Using a Fractured Borehole Model (균열모형시추공을 이용한 광학영상화검층 품질관리 시험)

  • Jeong, Seungho;Shin, Jehyun;Hwang, Seho;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.17-30
    • /
    • 2020
  • An optical televiewer is a geophysical logging device that produces continuous high-resolution full-azimuth images of a borehole wall using a light-emitting-diode and a complementary metal-oxide semiconductor image sensor to provide valuable information on subsurface discontinuities. Recently, borehole imaging logging has been applied in many fields, including ground subsidence monitoring, rock mass integrity evaluation, stress-induced fracture detection, and glacial annual-layer measurements in polar regions. Widely used commercial borehole imaging logging systems typically have limitations depending on equipment specifications, meaning that it is necessary to clearly verify the scope of applications while maintaining appropriate quality control for various borehole conditions. However, it is difficult to directly check the accuracy, implementation, and reliability for outcomes, as images derived from an optical televiewer constitute in situ data. In this study, we designed and constructed a modular fractured borehole model having similar conditions to a borehole environment to report unprecedented results regarding reliable data acquisition and processing. We investigate sonde magnetometer accuracy, color realization, and fracture resolution, and suggest data processing methods to obtain accurate aperture measurements. The experiment involving the fractured borehole model should enhance not only measurement quality but also interpretations of high-resolution and reliable optical imaging logs.

Splitting of Surface Plasmon Resonance Peaks Under TE- and TM-polarized Illumination

  • Yoon, Su-Jin;Hwang, Jeongwoo;Lee, Myeong-Ju;Kang, Sang-Woo;Kim, Jong-Su;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.296-296
    • /
    • 2014
  • We investigate experimentally and theoretically the splitting of surface plasmon (SP) resonance peaks under TE- and TM-polarized illumination. The SP structure at infrared wavelength is fabricated with a 2-dimensional square periodic array of circular holes penetrating through Au (gold) film. In brief, the processing steps to fabricate the SP structure are as follows. (i) A standard optical lithography was performed to produce to a periodic array of photoresist (PR) circular cylinders. (ii) After the PR pattern, e-beam evaporation was used to deposit a 50-nm thick layer of Au. (iii) A lift-off processing with acetone to remove the PR layer, leading to final structure (pitch, $p=2.2{\mu}m$; aperture size, $d=1.1{\mu}m$) as shown in Fig. 1(a). The transmission is measured using a Nicolet Fourier-transform infrared spectroscopy (FTIR) at the incident angle from $0^{\circ}$ to $36^{\circ}$ with a step of $4^{\circ}$ both in TE and TM polarization. Measured first and second order SP resonances at interface between Au and GaAs exhibit the splitting into two branches under TM-polarized light as shown in Fig. 1(b). However, as the incidence angle under TE polarization is increased, the $1^{st}$ order SP resonance peak blue-shifts slightly while the splitting of $2^{nd}$ order SP resonance peak tends to be larger (not shown here). For the purpose of understanding our experimental results qualitatively, SP resonance peak wavelengths can be calculated from momentum matching condition (black circle depicted in Fig. 2(b)), $k_{sp}=k_{\parallel}{\pm}iG_x{\pm}jG_y$, where $k_{sp}$ is the SP wavevector, $k_{\parallel}$ is the in-plane component of incident light wavevector, i and j are SP coupling order, and G is the grating momentum wavevector. Moreover, for better understanding we performed 3D full field electromagnetic simulations of SP structure using a finite integration technique (CST Microwave Studio). Fig. 1(b) shows an excellent agreement between the experimental, calculated and CST-simulated splitting of SP resonance peaks with various incidence angles under TM-polarized illumination (TE results are not shown here). The simulated z-component electric field (Ez) distribution at incident angle, $4^{\circ}$ and $16^{\circ}$ under TM polarization and at the corresponding SP resonance wavelength is shown in Fig. 1(c). The analysis and comparison of theoretical results with experiment indicates a good agreement of the splitting behavior of the surface plasmon resonance modes at oblique incidence both in TE and TM polarization.

  • PDF